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The Casimir operators of the graded Lie algebra (Sp(2N);2N) [denoted also by OSp(1}2N) in the
literature] are discussed. A general method, according to which the higher degree Casimir operators of
the graded Lie algebras, in our case of the (Sp(2N);2N), can be constructed is developed. It is shown
that the third degree Casimir operator of this graded Lie algebra does not exist. The Casimir operator of

the fourth degree is derived explicitly.

. INTRODUCTION

In recent years much attention has been devoted
in the physical and mathematical literature to the
graded Lie algebras (GLA’s). By various methods in a
number of papers the problem of classification of these
GLA’s (see Refs, 1--5) from a different point of view
has been studied.

For physical applications of graded Lie algebras it is,
of course, necessary to know, besides the classifica-
tion of the GLA’s the classification of their irreducible
representations. However, the problem of classification
(and consequently of the construction) of the irreducible
representations of the GLA’s has not yet been satis-
factorily solved.

Only for the simplest GLA’s: (Sp(2);2) and (SL(2)
®GL(1);2®2) (see Refs. 2 and 6), has the irreducible
representations been classified and explicitly
constructed. We here denote the GLA’s according to
the notation of Ref. 3.

A question of considerable importance for the solu-
tion of the up to date open problem of classification of
the irreducible representations of the GLA’s is the
problem of constructing the complete set of independent
Casimir operators of the GLA’s (similar to the
classical Lie algebras). Pais and Rittenberg? introduce
this problem as one of those which has to be solved.
The reason for this consists in the fact that the Casimir
operators possess for the classification of the
irreducible representations of the graded Lie algebras
a nonsubstitutional role, contrary to Lie algebras in
which representations may be classified either with the
aid of the highest weight (which is the most general,
and in literature the most applied approach) or by an
equivalent way through the eigenvalues of the Casimir
operators. A general definition of the Casimir operators
has been given in Ref. 7 in which Backhouse (for the
graded Lie algebras) has generalized the concepts well
known from the representation theory of Lie algebras.

Nevertheless, to construct explicitly the Casimir
operators of higher degree according to the approach
given by Backhouse (as he himself emphasizes) is a
very tedious problem.

In this way, the effort to find the simplest, and for
practical purposes useful, method for the construction
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of the higher degree Casimir operators of the graded
Lie algebras arises naturally. [For Lie algebras,

e.g., SU(n), O(2n+1), O(2n), and Sp(2x) such a
simplified method of the contruction of the higher
degree Casimir operators has been developed by Okubo,
see, e.g., Ref. 8,] At the same time, it is useful to
search for expressions of higher degree Casimir opera-
tors of the graded algebras, such that for Okubo’s

type, higher degree Casimir operators of the Lie
subalgebras will appear explicitly along with the eigen-
values which are possible to be found according to
already worked out methods (see, e.g., Refs. 8 and 9).

The purpose of this paper is to discuss and derive the
higher degree Casimir operators of one of the simplest
semisimple graded Lie algebras, i.e., the algebra
(Sp(2N);2N), which has been mentioned in the classical
paper of Pais and Rittenberg. ? The suggested method
enables us to construct all the Casimir operators of the
graded Lie algebra (Sp(2N);2N) (i.e., of the 2,4,6,..
2Nth degree) which include the (same degree, indepen-
dent) Casimir operators of the Lie subalgebras Sp(2N),

It is shown that the third degree Casimir operators
of the GLA’s (Sp(2N);2N) do not exist. The Casimir
operators of the fourth degree are then found explicitly,

As to the content of the paper: The structure of the
graded Lie algebra (Sp(2N);2N) is recalled in the
second section in detail., In Sec, III the higher degree
Casimir operators of the algebra (Sp(2N); 2N) are dis-
cussed and some of them are given in explicit form,
Useful mathematical identities are given in Appendix A,
Appendix B contains the full derivation of the fourth
degree Casimir operator,

Il. STRUCTURE OF THE SYMPLECTIC LIE
ALGEBRA Sp(2/) AND GRADED LIE ALGEBRA
(Sp(2V); 2N)

A. Lie algebra Sp(2/V)

The symplectic group Sp(2N) is formed by the linear
transformations!® (in the 2N-dimensional space) which
leave the bilinear form

[x,5] =i.jz=‘/-1vguxiyj

N
=§(x,-y-i-x-;yi) (1)
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invariant.® Here the components g, ; of the metric
tensor are defined as

8i3= €0, (2)
with
1 for i >0,
e, = (0for i=0, (3)
-1for (<0,

The generators® X, (i,j=-N,...,-1,1,...,N) (denoted
as X! in Ref. 8) of its algebra fulfil the commutation
relations

(X0 X 1= 6,515 = 8,15, +eie,0

ij? “1j =i

+e,0 X gy (4)
They may be represented in the coordinate representa-
tion by the differential operators as

9 0
X”:xi-gzl-—&iejx_j'éz: (5)

from which the following relations for the generators
X, ; follows:

eieiXij:_X'j'i’ (6)
N

2 X, =0. (N

j==N

The dimension of the algebra Sp(2N) (the number of
independent generators X, ) is N(2N + 1). By using the
differential form for the generators X”, Eq. (5), the
equation which describes the transformation properties
of the 2N-dimensional vector x [with components Xy
k=-N,...,-1,1,...,N)] is given by

[XU s X = Oy —€48,0 5%

E(Qij)lkxl' (8)

Here the matrices @,; consisting of the matrix elements
(@)1 =10:10yy —€:6,0.,,0. (9)

represent the Sp(2N) generators in the lowest, i.e.,
the 2N-dimensional representation,

Denoting by g the matrix whose matrix elements
gy, are given by Eq. (2), we can write down the relation
between the matrices Q” and their transposed matrices
@7}, in the following form,

_ T
Q8= -89,

(from which it follows that the gQ“ is the symmetric
matrix).

B. The graded Lie algebra (Sp(2/V);2N)

The graded Lie algebra (Sp(2N};2N) is formed by the
operators X, and V; (¢,j=-N,...,-1,1,...,N). The
X,, are at the same time the generators of the algebra
Sp(2N) and the V, components of the irreducible [w.r.t.
Sp(2N)] operator, which transforms under the lowest
2N-dimensional representation of the group Sp(2N). The
transformation properties of the operators V; w.r.t
X, 4 are therefore identical with those of x, (components
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of x) in Eq. (8) and the equations
[Xu’ Vk] = (Qu)nvt
=6,V —ee 0.V, (11)
The GLA (Sp(2N);2N), generated by the operators X,
and V,, is defined besides Eqgs. (4) and (11) by the
“products” of two operators V, and V, which are
represented by the anticommutators {V,, V,}. The

algebra of operators Xi/ and V, is then closed if the
relation

{Vk,V,}:(gQU)k,XH (12)
is fulfilled.

By using Egs. (2), (9), (11), and (12) the Jacobi
identities

[Vj’ {Vk’ VIH"’_[VM {Vu V,H+[V” {Vj! V;;H:O: (13)
[Xip {Vk’ VIH+{[VIU Xij]’ V1}+{[Vz’ Xij]’Vk}":O’ (14)

can be immmediately verified. As a result, by Egs. (4),
(11), and (12), the graded Lie algebra (Sp(2N);2N) is
defined.

Equation (12) by the use of Egs. (2), (9), and (6) may
be also rewritten into a simpler and useful form

Vi Vib=26,X,,,=2¢,X,,. (15)

11i. CONSTRUCTION OF HIGHER INVARIANTS OF
THE LIE ALGEBRA Sp{2/V) AND GRADED ALGEBRA
(Sp(2n); 2N)

A. The construction of the irreducible tensors and
invariants [w.r.t. the group Sp(2N}] with the aid of
the operators X;; and Vi

It is well known® that with the aid of the generators
X, of the symplectic algebra Sp(2N) it is possible to
construct the irreducible tensors
oo Y

Yo igrenani =N

]

P ig i
Xo»ﬂAip-lipXipj, (18)
which have the same transformation properties as the

generators X, , i.e., they fulfil the commutation
relations

[x

ij’

(9] () (»
ij) Tkl ]“éijil _GilTkj

+eiej6 T,(zfz-%gjeké 70 (17

-1 -ipt -yl
Analogously, by using relations (4) and (11), we find that
the operator V,, defined by the equation
ﬂ
V’;:,Z’.’NAWVJ" (18)
has the same transformation properties as the operator
V., i.e.,

{x Vl;]:(ﬁkjvfi—eiejéﬂikv:j‘ (19)

k>
if?
The operator V' also has the same transformation
properties as the operators V, and V;, in case it is
defined as

+N

4
Vi= 2 X, V). (20)
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From the above-mentioned construction of operators
V{ and V, it is apparent how to further construct the
operators of this kind.

In the frame of bilinear combinations of generators
V,, there is the following one,!!

Ty =e,V.,V,. (21)
This operator is remarkable by the fact that its trans-
formation properties [w.r.t. Sp(2N)] are identical with
the transformation properties of the generator X,;,
i.e., the following relations are valid,

(X, T4 ]1=0,,T}, =6, T}, +e,e,0.,,T

!
ij? =1j " k=i
T

" (22)

If we have any two operators T,,, T},, which transform
in the same way as the generators X,;, then the expres-
sion 37, T4 Tiy, constructed with the help of them,

=N“rt" IR
represents an invariant w,r.t. X,,, i.e., we have

tee,b

iy
*N

x., 2

2 g iaeN

T, T1]=0. (23)

Similarly, if we have two vectors V], V, which trans-

form [under the Sp(2N)] as the vector x,, then the

bilinear combination of operators V; and V,', defined as
N

w oy ViguwV ae (24)
also represents an Sp(2N)-invariant, so that the com-
mutator is equal to zero,
+N
Xy 20 Vigg Vil=0.

kyr*=~N

(25)

B. Construction of the invariants of the graded Lie
algebra (Sp(2/V}; 2NV)

As we have already mentioned in the Introduction, the
construction of the second degree Casimir operators of
GL A’s has been discussed in a number of papers: In
the case of the algebra (Sp(2N);2N) it is possible to
write, with the aid of generators Xu and V,, the

Casimir operator of the second degree in the form
Ky=X, X, +V.g,V, (26)

By using relations (11) and (12) it is easily found that
V, commutes with the operator K,,
[sz Vm] =0,
The relation
(K, X,,]=0 (28)

is evident, as the two terms in the K, are Sp(2N)-
invariants w.r.t, the operators X” separately.

In the next discussion we mention the Casimir
operators of the third and fourth degree in details.

It is well known that the Casimir operator of the third
degree, defined by the equation®

Cs :XifXijki ’
is not independent for the symplectic algebra Sp(2N)
[contrary to, e.g., the algebra SU(r)] and it is
expressed with the aid of the independent quadratic

(29)

1489 J. Math Phys., Vol. 19, No. 7, July 1978

Casimir operator C,=X, }X P by the equation
C,=2(N+1)C,. (30)

Thus, the question arises, whether the invariant of the
third degree of the graded algebra (Sp(2N);2N) is possi-
ble to be constructed with the aid of the generators X“

and V,. Using the following equations:

Sp(Qi:j.Q“): 26“:6.”1 - zeilejléj_il Gi'j’ y
gQUg: Q,TI = Q/;;
for the matrices @,,, defined by Eq. (9) (the matrix

elements of g are components of the metric tensor),
from Eq. (12) the relation

Vk(gQij)UVl = 2X”

can be derived. This of course, means that the
bilinear combination V,(¢®@;,),, V, of the generators V,,
which have the same transformation properties as the
generator X;, is in the graded algebra directly pro-
portional to this generator. Therefore, the Sp(2N)
invariant of the third degree Vk(gQij Vs V,X;; is in the
graded algebra (Sp(2N);2N) expressed with the help of
the quadratic Casimir operator C, by the equation

Vo(eQ,)u VX, =2C, 22X X, .

(31)
(32)

(33)

(34)

The bilinear combination of operators V,, defined by
Eq. (21), represents the operator with the same trans-
formation properties which has the generator X,,. With
the help of it, it is possible again to define the Sp(2N)
invariant of the third degree,

T X e (35)
As, of course, the relation
eV VX=X X, (36)

is valid (see Appendix A) it is evident that the operator
(35) as well the operator (34) is proportional to the
quadratic Casimir operator C,. It means that it is

not possible to find, i.e., it does not exist, a third
degree invariant of the graded algebra (Sp(2N);2N).
From the three operators V,, namely, it is not possible
either to construct the Sp(2N) invariant.

Now, we start the discussion of the Casimir operator
of the fourth degree of the graded algebra (Sp{2N);2N).

The Casimir operator of the fourth degree of the Lie
subalgebra Sp(2N) is known from the paper in Ref. 8,

ComX, X, X, X,.. (37)

For further discussion it is very advantageous to use
the operator

TU :Xi!'Xi’J' ’ (38)
which has the same transformation properties as the
operator X,,. Then the Casimir operator C, of the Lie
subalgebra Sp(2N) may be written down as

C,=T,T

il (39)

As we have mentioned above, the operator T}, =
-¢,V.,V,, bilinear in the V, [see Eq. (21)] has the
same transformation properties as the operator X,,.
With the help of operators T}, and T, it is possible to
construct two operators of the fonrth degree (which
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contain two operators of the type X, 4 and two operators
of the type V),

€ V. 14 T!J-l

-V Vi Tjj,e_!V V.. (40)

=¥

It has been mentioned before that it is possible to
construct the Sp(2N)-invariant with the aid of the
operators V] defined by Eq. (18). The operator

VgV o= Vi, V., (41)

is also a Sp(2N) invariant of the fourth degree [see Eq.
(24)]. Of course, the operators, Eqs, (40) and (41), are
not independent. Using Eqs. (4), (11), and (15) the
following relations may be found:

ViguV =T e V.,V 4 X, X, (42)
Vigu Vi€, VoV, T+ X, X, (43)

in which besides the operators of the fourth degree
quadratic Casimir operator C, of the algebra Sp(2N)
appears.

It remains to construct the Sp(2N) invariant with the
aid of the product of four operators V,. The simplest
possibility is to take such an operator in the form

*N +N
(LieV., Vj)(jZ;Ne_j,V_j,Vj,), (44)

The other possibility is to take the operator in the
following form,

TuTl =e,V Vel VoV, (45)

-k =R
where T}, is defined by Eq. (21). The operators (44)

and (45) are certainly not independent as the following
relation between them is valid,

€VaViEL V.,V ==,V V)V, V)

k" =k

+4X,, X, + 202N + De V_, V. (46)

-k

The Casimir operator of the fourth degree of the graded
algebra (Sp(2N);2N) can be constructed with the help

of the described Sp(2N)-invariants (39), {40), and (44).
By using relations (4), (11), and (12) we can verify that
the Casimir operator of the fourth degree is given as

TJ’J Ty~ (2N*+5N + 3)ij nghk'Kk'j’ Vi
+ L(2N? + 5N +5)e_ V_V T,,,+T,

M AN itV V)
= e, Vo Ve Vo V) =K, (47)

-J'
Namely, by using the above-mentioned equations, it can
be proved that the following is valid,

(K. V,]1=0 (m==N,...,+N). (48)

The proof of this statement is given in details in
Appendix B,

CONCLUSION

The simplest Casimir operators of the graded Lie
algebra (Sp(2N);2N) were discussed. It was found that
besides the quadratic Casimir operator, which is known
from a number of papers, the Casimir operator of the
fourth degree also exists. The third degree Casimir
operator of the graded Lie algebra (Sp(2N);2N) does not
exist. The position with the graded Lie algebra (Sp(2N);
2N) is in this respect very similar to that with the
symplectic Lie algebra Sp(2N), where the independent
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Casimir operators are only of even degree. The Casimir
operators of odd degree of the algebra Sp(2N)—contrary
to the graded algebra (Sp(2N);2N)—exist, but are
linearly dependent on the Casimir operators of lower
degrees. The method used inthis paper, for the
derivation of Casimir operators of the fourth degree

K, can be simply generalized and applied for the deriva-
tion of any higher Casimir operator, i.e., the operator
of the sixth degree, eight degree, etc,

In a general case the Casimir operator of the 2nth
degree of the GLA (Sp(2N);2N) will consist of the
Sp(2N)~invariants formed by the polynomial 2nth degree
in the generators X” and V,. The 2nth degree
polynomial in the X‘.j is naturally the Sp(2N)-Casimir
operator

Ty, iy Ti"il‘

Further, a contribution will come from all operators
which are polynomials of the (2n — 2m)th degree in Xy
and of the 2mth degree polynomials in V, (m=1,2,...,
n) as

H

i1i2T1'.2£3 ter Ti"il
s 3 .
Tiliz iaig 1oiy
e e !
TilizTi2i3 Ti"ily
T! T, =T, ., etc.

iyio” dgig iy
Of course, the last operator will be the polynomial
of the 2unth degree in V,
iyiy fois gnil’
The solution of the problem as to how the particular
operators will contribute to the Casimir operators

K,, may be found directly.

Obviously the number of independent Casimir opera-
tors of the graded algebra (Sp(2N);2N) is at least equal
to the number of independent Casimir operators of the
Lie subalgebra Sp(2N).

APPENDIX A
A. The derivation of relation (A1)
-X,.X,

j': V!,V_k(:kaj,. (Al)

If we carry out in the operator V.,V _g,X,,, the change
of indices % — -j’, j' — -k, we can rewrite this
operator as V_ij,e_j,X_!,_,,. If in addition we use Eq,
(6), this operator may be rewritten in the form.
V_ij,ekaj,. Therefore, it is possible to write

VoV oeiX = 3V Voo Xt Vo Ve, X o)

I

BV, V66Xt VoV, 6,0

%Gk{vj' ’ V-k}X)U‘l . (A2)

{l

Using relation (15) we get
%gk{Vj,, V_k}ij,:—Xj,qu,.

If we use Eq, (A2) we obtain Eq, (Al). In a similar way
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it is possible to prove the following relations:
XyonKg = VoV oo X
Xy u Xy =X, Ve Vo

and a number of others.

B. The deirvation of relation (46)

Using relations (11) and (15) we can derive the
commutation relation

e, V., V,, V,l==4V. X, , -2@N+1)V .
With the aid of the invariant relation (45) it is possible
to rewrite the above in the form
(e V. VeV V)

-k -k

=,V V Ve Vo +4V X, +2@N +1)V))
= (e, Vy V) (Ve Vo) +4X,X, +2

+2(2N + Ve, V.,V,,
which is just Eq. (46).

APPENDIX B: Derivation of the Casimir operator of the
fourth degree K,

Let us consider the snperposition of the operators

I=AT T, +Ble V. VT, + Tppe V.,V))

FCley Vo Ve VoV,

=37

which are defined by the Eqs. (39), (40), and (44). Then
[,V 1=AT, [T,.,V,]+AlT,,, V,IT

A 14
+Be V.V, [T,V 1+Ble V.V, V,IT,,

+BTj,j[e_j,V_j,Vj, v, 1 +B[Tj,j yVale VoV,

-3

<Y
+Ce V Ve, VoV, V,]
+C[e_jV_jVj, V., V.V,
By using relations (4), (11}, and (15} with Eq. (6) the
separate terms in the commutator [I,V_] can be written
down in the form
(7,,,V, T, =4V, X, T ~(6N+3V_ T,

+ VX, (2N +2)2N+3V, T,

+ VT s
VIT,=-4V, X, T, -2V T,
+2RN+ DV, T, +2(@2N+2)V_X
V=2V, VIV, X -2V T,

+ (2N + (V. e, VIV, -4V, T,
AN+ DV, X,
Ve VIV Voo Vo0l
=(V e, V(=4V, X, ~2@N+ 1)V ),
[Ti’f’ Vol Ve,
= =2V X Ve, V)~ @GN+ 1V (Ve V)

+4V, T, +4(N -~ 1)V X, +4N@N+1)V, +2T,V,,

ley V¥,
m=1’

e VeVl Tpos

VeV o Vol Ve, V)

= (=4V, X, - 2N+ DV )V,e,V_),
ete.
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By using these equations we may simply find that,
under the assumption A=B=1, C=-3, it is possible
to eliminate in the commutator [/, V,] all terms which
contain the products of four generators of both types,
X,, and V,. Namely, we can write:
wl:[TJ'J’ ValTip Hle Vo Vi, Vol Ty,

==2NV, T, +V, T+ @2N+2)*V X
wp=T, T, V] + Ty le, VoV, V]

=2NT_V,-T,V,+2(2N + 2)X,,V,,
wy=€_,V V’,[T“, Vol =5V e V—h'[Vhth-v Vol

==~2V,Ty—-4V,T,, +4WN+ 1)V X .
wo=[T,,V J VoV, = V& Vo, VIV, V.,

=4V,T, + 4N -1V, X, +2T,V +4N@N+1)V .

kR m

myr

Therefore,
4

Y w,=2N[T

i=1

mi Vj] +[Tn, Vm]

+(4N*+16N + )V X, + 4N+ 4)X .V,

+4N@2N + 1)V,
Finally, by using the relations
(T, V,]=@N+1)X,V, -V X,
[Ty V] =20V X, + 2N+ 1)V )

it is possible to write the sum of w,, ¥i.,w;, in the form

4
2rw, = (@2N*+5N +3)[T,,,V _].

i=1

Therefore, for the case of A=B=1, C= -3, the
operator

K,=I-(2N*+5N+ 3T,
fulfils the relation
(K,, V, ]1=0.

Using Eqs. (42) and (43) we can write the operator T,
in the form

Toe= Vi Vie= $(T, e,V .,V

ey VoV Ty

and gain expression (47) for the Casimir operator K,.
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lipesides the operators T4, it is possible to construct, in the
frame of bilinear combinations of generators V,, two other
irreducible [under the Sp(2N)] tensors: the invariant opera-
tor g;;Vidy, ! Vy/(scalar) and the antisymmetric tensor

Ry = ViV = ViV ~(8;;/N) Vi Vigs
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which fulfils the conditions
Ry;=—R;; and g;;R;;=0.

The tensor T%; corresponds to the Young tableau i, while
the remaining two tensors correspond to the tableau(], which
appears in the decomposition of the direct product
U=H0e 0.
i
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Representation of para-Fermi algebras is obtained utilizing the operators of a single Fermi field. In
analogy with Kalnay’s para-Grassman algebras, para-Clifford algebras are defined in terms of Fermi

operators.

I. INTRODUCTION

Green® in 1953 gave the representation of the para-
Fermi and para-bose operators by forming linear com-
binations of several different commuting Fermi and
anticommuting Bose fields respectively. Ramakrishnan
and his co-workers have obtained representations of
para-Fermi rings employing the elements of the gener-
alized Clifford algebra.?®? Para-Fermi fields of higher
orders, p >1, may be related to higher spins. * Hence
there is continued interest in such representations.

Recently Kalnay®'® realized the representations of
para-Fermi operators employing boson operators and
suitable boson vector spaces. It will be our attempt in
this note to obtain in Sec. 2 the representations of para-
Fermi operators in terms of the usual anticommuting
operators belonging to a single Fermi field. In Sec. 3
we show that some results similar to those of Kalnay®®
can also be obtained using Fermi operators and we con-
struct para-Clifford algebras in analogy with Kalnay’s
para-Grassman algebras.®

2. REPRESENTATION OF PARA-FERMI ALGEBRA

Para-Fermi operators of order p, {A‘,-"’ li=1,2,...,
n}, and their Hermitian conjugates obey the relations

(A", 4], 4" 1=20,40", M
[[a®, a ), AP ]=[la, 42", 4 "=0, 2)
(AlPy=o, (3)

Vi,j,k=1,2,...,n.

Green’s ansatz of constructing the para-Fermi
operators of order p is to start with p different Fermi
fields which commute with each other but anticommute
among themselves. Thus, letting {(a!"’1j=1,2,...,7)
11=0,1,..., p -1} and their Hermitian conjugates de -
note the set of p commuting sets of Fermi operators,
we have to form the linear combinations as

A(p»_(;;l n i=1.2 4)
; —T:Joaj , Jj=1,2,...,n. (

Then it can be easily seen' that {Aj”} satisfy the rela-
tions (1)—(3). We want to point out that in the above
construction (4) the original {a!"’} belonging to different
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I’s commute with each other since they represent dis-
parate Fermi fields.

Let us now turn to our efforts to constructing para-
Fermi operators {4}”'} from the basic operators
{a,. lj=1,2,...,np} belonging to a single Fermi field.

It is asserted that {4}”}, given by

1=g {\7=1

p ‘Q_-‘l In +
AJ'P):L (H [ar?ar])alnﬂ' ’ j=1’2""’n’ (5)
will satisfy all the conditions required of para-Fermi
operators of order p [Egs. (1)—(3)].
To this end let us proceed as follows. Defining
a,={at+a,). B;=ilal-a), j=1,2,...,np, (6)

it is easy to see that

{a,, B}=0,
{a,, a,}=1{8;, B}=25,, (7)
j, k=1,2,...,np,
Now let us define the Hermitian operators
P,,,,,:i’"‘z‘"*”(ﬁl’”rBr)”tnm (8)
Q= i7" "(n w,sr)s,m,, (9)

j=1,2,...,n, 1=0,1,..., p=1.

Then it follows immediately that
{mej» Qs =0,
{Ptn”‘a Pznue}:{me,'; Q1n+k}:25,'k, (10)
Vi=0,1,...,p-1 and Vj,k=1,2,...,n,

and

[Pln+j1 Pmn+k]: [lej? Qmmk]
:[anw” anﬂz]:O (11)
v j;k: 1’2’ .o

., and [#m.

It is now easy to derive from the {P} and {@} operators,
a}” operators of (4) which constitute a set of p commut-

ing Fermi fields. Let us define

a;”:%(mef'*’ithj)’ (12)
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,
o' =P

Invj = Zle;)

v i=1,2,...

(13)

,n and [=0,1,...,p -1,

Now we have all the necessary ingredients to make use
of Green’s ansatz (4). Therefore, we write

A;P)::L:{) ; :%ZS(PM” +ZQ1"*1)
Pt
:%%{){(m(ztmn 1 «,8 ) (s + iﬁlmj)} (14)

p-1 in
=2, (El (a,, a"])alm.}, j=1,2,...,n

This may be written out explicitly if need be as

A(p) {a +ay, aU[ﬂz, aj]- - [”w a”“’mi
+ [ax: afl][az, a;]' v [azm a;n]ahﬁj (15)
+e oo+ lay, allla,, afl---

vi=1,2,...,n

[a(p-l)n’ a‘zp-nn] a(b-l)rﬁj}’

For example, if =3 and p =2, we have to take six
operators {a;| j=1,2,...,6} and their Hermitian con-
jugates of the basic Fermi field and construct the three
operators of the para-Fermi field of order 2 as

A‘lz’:al’* [au 0*1 [as, a3llas, allas,
A =a,+ [a,, a} [, alllas, a}las, (16)
A;Z):aa+ la,, allla,, a}llas, allag.

The Hermitian conjugates of the operators (14)—(16) are
easily obtained. It can be directly checked that A},
A‘j"”, etc. given by (14) satisfy all the requirements
[(1)—(3)] characterizing the para-Fermi field of order
p.

In the boson description of fermions®° the para-
Fermi operators constructed from the boson operators
have to operate on the p-boson subspace of the boson
state vector space. It is emphasized here that our AJ‘.”’
operators operate on the usual entire fermion state
vector space and are constructed out of operators be-
longing to a single Fermi field.

3. PARA-CLIFFORD ALGEBRA
Kalnay6 has shown that if

L/ Gtrs r 55 i=1,2,...,n, (17
=1

-
where {Gi} is any m-dimensional representation of the
ordinary Grassman algebra and b}, b, etc. are the
usual boson operators, then {gi} generates an algebra
with the commutation relations

[[gu gj]’ gk]:(), Vi, j,k=1,2,...,n (18)
The {g,-} algebra has been called the para-Grassman
algebra by Kalnay.®

In a similar vein let us define

m
€= 2, M a:as, j:l,z,...,n, (19)

r,s=1

irs
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where {M i} is any m -dimensional representation of a
given algebra and a!, a,, etc. are the usual Fermi
operators. It is easy to see that

€:6,6,= (M, M,;M)), ala,

(MM, M+ (MM ) M e
2
+ (MM, M, Jlalalaa, (20)
-M M, o Myupalal.aluaagag.,
Vi, i k=1,2,...,n
Hence it follows that
[[ i j) k] [ 7”12] rs r 53
(21)
Y i, j,k=1,2,...,n.

In (20) and (21) summation over repeated indices is
assumed.

Taking {M,} to be the representations of the usual
Grassman algebra (21) shows that {¢,} generates a para-
Grassman algebra.® In contradistinction to Kalnay’s®
representations we note that the above {e ;} involve
Fermi operators instead of Boson operators.

If {M,} denote the representations of the usual Clifford
algebra satisfying

M, M=26,, Vi, j=1,2,...,n, (22)
then {¢,} satisfy the following relationships:
4[[ i’ J] k]._E 5 _6161);’

(23)
v, j,k=1,2,.

It is to be noted that (23) is a relation met with in the
case of the Kemmer algebra.

We may call the € algebra the para-Clifford algebra
in analogy with the para-Grassman algebra derived by
Kalnay.®
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Regge pole behavior in ¢* field theory

M. C. Bergére® and C. Gilain

CEN-Saclay, B. P. n° 2, 91190 Gif— Sur— Yvette, France
(Received 30 November 1977)

We consider the Feynman amplitudes for all the essentially and crossed planar graphs of the four-point
vertex function in ¢* field theory, and we evaluate their behavior at high energy (large s, fixed ). We
compute the coefficients of all logarithms for the dominant amplitudes which behave in s -1 (up to
logarithms of s). This computation is performed by using the Bogoliubov-Parasiuk-Hepp R operation
and the Mellin transform of the Feynman amplitudes. The geometrical structure of the coefficients is such
that all logarithms of s of all dominant amplitudes can be summed to give the well-known Regge behavior
with signature +. The Regge trajectory verifies an equation which may be solved explicitly in the lowest
order approximation; the residue is found to be the ratio of two functions of ¢, the upper one being
factorized into two vertex functions expressed as infinite series and the lower one providing a ghost killing

factor.

INTRODUCTION

One of the many striking facts when one deals with
interaction between hadrons is the relevance of the
Regge picture: the scattering amplitude at high energy
and small angle is well reproduced by a Regge behavior,
in particular the energy dependence is a ¢ dependent
power of s. It is clear that any theory of strong inter-
actions will have to reproduce this fact.

On the other hand, recent progress in quantum field
theory, especially in gauge field theories, indicates
that field theory is likely to provide us an underlying
strong interaction theory, Consequently, the importance
of deriving Regge behavior from field theory is quite
obvious.

Such a proof exists in potential theory,! and, of
course, it is not a new problem in field theory, Many
papers have already appeared on reggeization, in
scalar and gauge field theories, and it is necessary
to make clear to the reader what we mean really by
reggeization, We mean by reggeization the property
of the two-body scattering amplitude at large energy
s, for a given transfer ¢, to behave as a sum of terms
of the form B(¢) s*'*’. We shall not consider here the
problem of the materialization of the Regge
trajectories.

Let us now discuss how Regge behavior may be ex-
hibited from field theory,

One method consists in using the Bethe—Salpeter
structure of the four-point function in the ¢ channel.?
Assuming at large s a factorization property in the ¢
channel, a Regge behavior may be proved quite general-
ly for the solution of the Bethe—Salpeter equation.*

A second method exploits the large s behavior of
Feynman graphs. Many papers® deal with the large s
behavior of the graphs contributing to the low orders
of the perturbation series, and then examine the co-
efficients of their logarithms of s, in order to exhibit
(or not) the beginning of an exponential series.

In another set of papers, the authors select a sub-
class of diagrams (ladder graphs, for instance) and

2 Pphysique Théorique CNRS,
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perform the summation of the leading logarithms of s,
or if possible of more powers of logarithms. ®

Several other papers determine the leading power of
s and the maximal power of logarithm of s for the most
general graph contributing to the amplitude. T Precise
rules are given by Zav’yalov® for planar convergent
graphs and by Zav’yalov and Stepanov? for planar di-
vergent graphs. Unfortunately, no rules are given to
find the coefficient of the logarithms (at least beyond
the leading power of logarithm). Efremov et al. Yina
series of papers have described a general procedure
in order to perform the infinite sum of logarithms of s,

Our work lies in the same spirit than the papers of
Zav’yalov, Stepanov, and Efremov. For all graphs of
A¢® which are not susceptible to contribute to a possible
Regge cut but only to a possible Regge pole, we prove
the three following points:

(1) We prove the existence of a class of dominant
amplitudes which behave in s up to logarithms of s.
We characterize all graphs of this class (Sec. 2).

(2) We determine the coefficients of all powers of
logarithms of s for any graph of the above class, These
coefficients are expressed in terms of subgraphs and
reduced graphs (Sec. 3).

(3) We sum the result (2) over all graphs of the above
class. The geometrical structure of the coefficients
of all powers of logarithms of s explains their exponen-
tiation. The functions B(#) and o (#) are found as infinite
series (Sec, 4).

Our technique is based on the use of the multiple
Mellin transform of a Feynman amplitude and of
Bogoliubov- Parasiuk—Hepp R operator, and is a
generalization of Ref, 11.

The rest of this introduction is devoted to a classi-
fication of the graphs contributing to the amplitude and
also to definitions and notations.

The connected 4-external legs, Green function
G%y) (ps, m, g) may be expressed in terms of the in-
variants p? and of the Mandelstam variables

s=(py+p2)% t=(p;+psl, u=(p +p)), (1.1)

where the external momentum p; are ingoing, We re-
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call that these variables are dependent since

4
s+t+u::21 e, (1.2)
i=
It is convenient to classify the different Feynman
graphs contributing to G¢,,(p;, m, g) in four different
classes depending upon their topology,

Definition: Given a connected Feynman graph G with
n vertices, ! internal lines, and L independent loops,
we define:

—A one-tree subgraph is a connected tree subgraph
connecting all the » vertices of G. (Such a one-tree
may be obtained by cutting L lines of G with the condi-
tion that each cutted line decreases the number of loops
by one.)

—A two-tree is a two-connected tree subgraph obtained
by cutting one line to one of the above one-tree. (One
of its connected part may be an isolated vertex.) A
two-tree partitions the external momentum into two
parts I; and I, and

Eﬁi:— Z; pj

3SR #] €Iy

(1.3)

Given a one-tree constructed from a graph G con-
tributing to G§,(p;, m,g), this one-tree is called an
s(resp. t,u)-one-tree if all the two-trees which are
constructed from it are such that the different squares

( Zpi>2=(2p]->2 (1.4)

3N 8] sy

which are not 0 or p? (i=1,2,3,4) are s {resp. t,u). It
is clear that, for any graph G in ¢°, there exists at
least one two-tree such that the corresponding square
is either s, f, or u. The Feynman graphs with 4-exter-
nal legs such that all their one-trees are f-one-trees
contribute to Gh) {t, p?, m, g). The Feynman graphs which
have at least one s-one-tree but no #-one-trees con-
tribute to Gk, (s, t, p%, m,g). The graphs contributing

to Gi;, and G%;, are called essentially planar (all planar
graphs are essentially planar but many nonplanar
graphs are also essentially planar as it is shown on
Fig. 1 where the striped kernels are nonplanar; such
nonplanar kernels are self-energy graphs or three-
external legs graphs). The Feynman graphs which have
at least one u-one-tree but no s-one-{rees contribuie to
Gyy(t, u, p?, m,g) and are called crossed planar. Finally
the remaining graphs which have at least one s- and
one u-one-tree contribute to Gty (s, 1, u, pt, m, g).

The graphs of G},,(t, p?, m, g) contribute as a constant
to the large s, fixed ¢, behavior of the amplitude. They
are taken apart from the following evolution of this
paper and are considered only in the conclusion,

The graphs contributing to Gi,, for i =2,3,4 are of
the form given by Fig. 2, where each black dot rep-
resents a graph which contributes to the complete

FIG, 1.
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FIG. 2,

propagator and where each kernel N; represents a
graph two-line irreducible in the ¢ channel, If, for a
given graph G represented by Fig. 2, at least one of
the subgraphs N; has both s- and #-one-trees, then it
is clear by the cutting rule of internal lines that G con-
tributes to G, (s, f,u, p?, m, g). Such graphs are suscep-
tible to generate Regge cuts® and are beyond the scope
of this paper. If, for a given graph G represented by
Fig. 2, no subgraph N, has both s- and u-one~trees
but ¢ subgraphs N; have at least one u-one-tree, then,
if g is odd, G is a crossed planar graph and contributes
to Giy, (t,u, p?, m, g); if ¢ is even, then G contributes to
6%4)(33 Z ng n, g)°

We now define a Feynman amplitude by its
Schwinger-integral representation

w g |4
15:(_g)"i-°°<0”2f [T da,exp (—iexp(— i€) 22 aamz)
0 a=1 a=1

¥R {gxp{i exp{— i€)[k; () d;; (o) k; ()]} } )

Pila)

1.5)

For e=n/2, we obtain the amplitude in Euclidean space;
in Minkowski space I is defined as the limit € — 0 of

I$ and is known to be a distribution. The external mo-
mentum k() are defined as

kle) = (py explie), p)

and scalar products are defined in the Minkowski
metric {(+ -~ -) {with this definition the metric in
Euclidean space is ~ — — —), The above representation
is an application of Wick’s rotation. In this paper we
purposely omit writing the € dependence of /; in most
cases, The superficial degree of divergence of G is

w(G)=4L(G) - 21{G), (1.7

(1. 6)

where L(G) and 1(G) are the number of independent loops

and the number of internal lines of the graph G. The

functions d;;{@) and Ps(@) are characteristic of the

topology of the graph. The operator? R is a subtraction

operator which acts directly upon the variables o and

ensures the ultraviolet convergence. We define
R= 1 (1_ 7;-21('0))’

el G

(1.8)

where the operators 7 are generalized Taylor opera-
tors and the product runs over the (2! — 1) subgraphs of
G.

The generalized Taylor operators / are defined as
follows: Given a function f(x) such that x™f(x} is infinite-
ly differentiable for v complex, then

T Efle) =T 5 € ()} 1.9
This definition is X independent provided that x> — E'(v),
where E'(v) is the integer part of Rev and E'(v) = Rey;
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e=FE’(v) - v. This definition is generalizable to the case
of several variables o

Tgf(a)z[r’;f(a)[aa-pzda,v a€w]p=1 . (1.10)

The method used in this paper to obtain the asymptotic
behavior of I; at large s, fixed {, is a generalization of
the method used in Ref, 11 for the behavior of I, when
external momentum are scaled to infinity. We calculate
the Mellin transform of the Feynman amplitude in
regards to the variable which becomes large. Two
cases may appear. Either, the integrand of the Mellin
transform expressed in the variable o« has a “simutane-
ous Taylor expansion” in every Hepp’s sector defined as
an ordering of the variable o

0<sq, <o, (1.11)

iq ig TS ail
(there are 1! sectors); then, the operator!! R defines

an analytic continuation of the Mellin transform beyond
the first singularity and extracts the residue at the
first pole. This residue is closely related to the coef-
ficients of all powers of logarithms for the leading
power. In Ref. 11 for instance, we have given geometri-
cal rules in terms of subgraphs and reduced graphs to
describe the coefficients of the powers of logarithms.
The geometry of these coefficients is such that a sum-
mation of all logarithms of the leading power can be
performed. ¥ Or, the integrand of the Mellin transform
does not have a “simultaneous Taylor expansion” in
every Hepp’s sector, 4 which is the case in this paper.
It is then necessary to split the o integrand of the
Mellin transform into several parts, each of them hav-
ing a “simultaneous Taylor expansion” in every Hepp’s
sector. This leads to a multiple Mellin transform which
is analytic in a tube, the real part of which is a convex
polyhedron. The asymptotic behavior is then deter-
mined by an extremal point of the polyhedron. This dis-
cussion is performed in Sec. 2; it is found that, in ¢?
field theory, although the multiple Mellin transform is
unavoidable for nondominant amplitudes of G}, (be-
havior in s?1og®s, p> 1), the dominant amplitudes
{(behavior in s logs) may be treated by a single Mellin
transform even if the integrand does not have a “simul-
taneous Taylor expansion” in every Hepp’s sector. In
Sec. 3, we extract for a dominant amplitude of G%“ and
G}, the coefficients of the logarithms. In Sec. 4, we
sum all the logarithms of s for the power s~ and for

all dominant amplitudes contributing to G%“ and 6?4).
Finally in Sec. 5, we give the lowest order contribu-
tion to the Regge trajectory found in Sec. 4.

2. ESTIMATION OF THE LEADING POWER IN
s FOR A GRAPH CONTRIBUTING TO G(.%)
To any graph contributing to G¥,,, there exists a cor-

responding graph contributing to G?4), and the estima-
tion in s of the first amplitude is the same as the esti-
mation in « of the second one. Consequently, we restrict
our discussion to a graph of Gi,,.

The quadratic form [k;(e) d;;(a) k;(€)] which enter in
(1.5) can be written at e=0 as a sum over the invariants
s, t, and p? as

sA (@) +1A () + 42 PEA (@), 2.1)
i=1
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The function 4 ,{() is the ratio of two polynomials

N (@) over Pg(c) and is homogeneous in all @’s of de-
gree 1 since N,(a) is homogeneous in all o’s of degree
[L(G)+ 1] and Pg(a) of degree L(G).

We define an s cut as a set of lines (¢;,...,%,) such
that if these lines are cut, the graph G becomes two-
connected with one connected part containing the ex-
ternal legs p, and p,, the other connected part contain-
ing the external legs p; and py, and such that no subsget
of (i(,...,i,) has the same property. An s cut defines
two-connected subgraphs G, and Gpg; any one-tree of
G, union any one-tree of Gy defines an s-two~tree of
G, We have

A (a)=N,(a)/Psla), (2.2a)

Nya)= 23 I (2. 2b)

aaPGL(a)PGR(a).
{s cuts} [g€s cut)
Given a subgraph ¢ with x, connected parts and an s
cut ¢, this s cut ¢ split ¢ into two subgraphs ¢, and ¢
with respectively y¢, and x,, connected parts (some of
them being eventually reduced to single vertices). From

the topological relation

Up) +x,=n(@)+ L{p).

where #n(@) is the number of vertices of ¢, it is easy
to show that when all a variables corresponding to lines
of ¢ vanish like p, the expression

Afa)= { I )aaPcL(a)PGR(a)/PG(a) (2.3)
aS ¢
vanishes like py°w’, where
yc((p):_X?L +x¢R—XW° (2a 4)

Consequently, A (@) vanishes in the same condition
like p:v(W)

y(p)= i(nfyc(w. (2.5)

A subgraph ¢ is said to be essential if y(¢) = 1 (other-
wise it is a nonessential subgraph). An essential sub-
graph ¢ is such that the reduced subgraph [G/¢], where
¢ is shrunk into x, points has an s-independent Feynman
amplitude,

Example: We consider the graph of Fig. 3:
Pgla)=(a; +az+as)(a, +a, + ay)
+aglay + o, + a5 + o, + a5 + ay),
Nyla)=ajaz(a, +ag+ag+aq) +agaa; +ay + ag + ag)
oo+ apaz0.

The s cuts are {13}, {146}, {236}, {24}. The subgraph
{123} is an essential subgraph with y(¢)=1; the sub-
graph {567} is nonessential,

Let us show on this graph the property that [A ()]
which appear in the Mellin transform of the amplitude
does not have a “simultaneous Taylor expansion” in
every sector. We choose, for instance, the sector

FIG, 3.

P2

A
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O=soysaysa,€0 05 Sag<ag.

Because P;(a) does have a “simultaneous Taylor
expansion” in every sector, there exists a largest
monomial for the above sector which is oo, On the
other hand, @,c 04 dominates in the part of N (o)
which is [@yo (o + o3+ a5 + ag) + 0 0,04 + 0ya304] and
ayay0q dominates in the part o;ag(ay +a, +ag +ay).
Nevertheless, aja,04 and aq030; cannot be compared.
If we perform the change of the variables ¢ into the
sector variables g defined by

7 1
a;= 118}, da;= 1 pL2gdp,,

i=i =i+l
we obtain for [A ()] a behavior of the type
[A ()]~ (836381 828E8D)* (6363 + 83",
The function (3283 + 82)* does not have a “simultaneous

Taylor expansion” around 8; =0 if x is not a nonnegative
integer.

This example clearly demonstrates that there exist
graphs such that the corresponding 4 (a) does not have
the required “simultaneous Taylor expansion” needed
for the extraction of the residues from the single Mellin
transform. Among all possible partitions of A (a) into
parts which do have the needed Taylor property, the
most natural partition we can think of is the partition
into s cuts. For each s cut, the contribution (2.3) to
A (o) clearly has the required Taylor property.

We may now apply the results of Ref. 14, There,
we have proved the following theorem:

Given a convergent Feynman amplitude Ic{ak} in
Euclidean space, where {a,} is the set of invariants
(square masses and (Jp;)? built from the external
momenta p;), then, if we scale a subset {a,,} of the in-
variants by A, I;[Ma,}, {a,}] has an asymptotic expan-

sion for large A, of the type.
qa__ (p)

I[May}, {a.t] = ZQ Y m% log" gpol{a.t, {a.}), (2.6)

where p runs over the rational values of a decreasing
arithmetic progression with & as leading power, and
q, for a given p, runs over a finite number of non-
negative integer values.

This theorem is proved by using a multiple Mellin
representation of the convergent Feynman amplitude.
The extension of this theorem to divergent Feynman
amplitudes does not present any theoretical difficulties.
Moreover, the theorem is valid in some cases of
asymptotic expansion for a Minkowskian Feynman
amplitude, namely, when the asymptotic expansion
of the Feynman amplitude is determined by end-point
singularities (¢’s~0) as is the case in Euclidean
space, excluding pinch singularities [only the graphs
contributing to Gi, (s, t,u, p%, m, g) are susceptible to
develop pinch singularities].

In Appendix A, we generalize the method used in
Ref. 14 and apply it to determine the large s behavior
of the graphs contributing to G, (s, 1, pi, m, g) taking
into account the existence of the unique connected

—TTTTT>— FIG. 4
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divergent subgraph of ¢ (Fig. 4). We note that the
graphs of Fig. 4 are always disjoint and their union
is always nonessential.

Let us now discuss how we determine the leading
power behavior Q. First, we remind the reader how it
works with the single Mellin transform M(x). The func-
tion M(x) is analytic in x in a band € < Rex < ’; in
fact, M(x) is found to be a meromorphic function in x
with multiple poles, the first of which on the left is
at Rex =Q. The extension of this picture to multiple
Mellin transform goes as follows: The function
M(x45...,x,) is analytic in a tube the real part of
which is a convex polyhedron /; then £ is now obtained
as

n
Q=inf 25 x;.
P 1
Of course, this inf is obtained for points on the border
of /. In practice, the situation is more complicated
as we can see from Appendix A. We first decompose
the domain of integration upon the variables « into
Hepp’s sectors; then, if the graph contains divergences
the subtraction operator R is decomposed into contri-
butions which are attached to equivalence classes of
nested subgraphs (see Ref. 15). Then, for each Hepp’s
sector and for each equivalence class of nested sub-
graphs we obtain a finite sum of terms, each defining
a convex polyhedron / which determines for that con-
tribution an Qp. The leading behavior € is then the
largest Q@ pover all polyhedron /.

(2.7)

b

We now state the results of Appendix A, Our intention
is not to give for the most general graph of ¢3 con~
tributing to G, a rule to obtain ; this was done by
Zavyalov and Stepanov® using naive power counting
(although we have no counterexample to this rule at the
present time, we have not been able to justify it). On
the other hand, we prove that for any graph of ¢°
contributing to G?,,

Q<1 {2.8)

and 2 =~ 1, if and only if at least one of the kernel

N; described in Fig. 2 is a single rung v; (see Fig. 5).
Consequently, all graphs contributing to G%;, such that
no kernels N; is a single rung behaves for large s as
s% log*s with Q strictly less that (- 1) and are non-
dominant by a power of s in regards to the graphs such
that at least one kernel N; is a single rung y; which
behaves as s~! log*s. Assuming that summation of
logarithms for nondominant graphs still gives a non-
dominant contribution with regard to the summation of
logarithms for dominant graphs, we concentrate in the
next section on the graphs which have at least one kernel
N; equal to a single rung.

3. ASYMPTOTIC EXPANSION OF FEYNMAN
AMPLITUDES RELATED TO DOMINANT
ESSENTIALLY AND CROSSED PLANAR GRAPHS

We now consider a graph as described in Fig. 2 and
where each kernel N, represents a subgraphs such that

B -

FiG. 5.
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only s- and f-one-trees may be constructed from it. We
define 7 as the nonempty subset of indices j such that
the kernels N;, j<l, are single rungs ¥;. Then, the
function A (a) defined in (2. 2a) is given by

ey ¢ Ny, P {a)
Pgla,y) ’

where we associate a variable y; with the rungs N,
jel. The functions N,;(a) associated with the kernels
N;, &1, can be found by using the expressions (2. 3)
for each s cut ¢. Each polynomial P,(«) corresponds
to a self-energy graph represented by a black dot in
Fig. 2. Taking into account the subtractions to be per-
formed over the logarithmically divergent subgraphs
described in Fig. 4, the renormalized Feynman ampli-
tude for the graph G is

IG(S) — (_g)n (l-)-w(G)/2

As(ay'y): (3.1)

Nda Ndy exp[~ (2 & +2y)m?]
0

xR {exp{i[sAs(a, Y) +t4, (e, v) +3 L plA o, M}
Pila,y) ’

(3.2)
where we omit mentioning the fact that I;(s) is really
a limit € —~ 0 of Ig(s). The above amplitude is real in the
Euclidean region. The subtraction operator R in this
case reduces to

R=T1-7TH=1+2 o7, (3.3)

where the subgraphs ¢ are the logarithmically divergent
subgraphs. In (3. 3) we sum over all nests A/ of diver-
gent subgraphs ¢. In Appendix A we prove that limit
s—=1.(s)~s"! log*s and on the other hand I.(s =0) is
finite # 0. Consequently, the single Mellin transform

Mc(x)::fomds s 4(s) (3.4)

exists and is analytic for — 1 <Rex <0. In this region
we may interchange the integrals over s and over «

and y. We may also interchange the integral over s and
the subtraction operator R because A (,y) does not
vanish when all variables @, corresponding to all diver-
gent subgraphs vanish:

_](;xds s R{explisA {a,y) -}

=R{ [ "ds s explisA,(a, )] -}. (3.5)

If we remember that s in exp[isA (o, )] has a small
positive imaginary part, we have

fomds s explisA e, y)]

= TI'(~x) exp(~ inx){id (o, V) [} (3.6)

where i* is exp(i7x/2) and where we insist on the [+4,]
for the homogeneity reason and reality of the (o - ¥)
integrals in the Euclidean region. The Mellin transform
M(x) is found to be

Mg(x) = (= g)"(i) P2 P (= x) exp(— z’wx)f INda Ndy
X expl- i(20a +22y) m?] 0

w g A0 V] expli[tA (o, y) +31. piAi(a, )]
2
PG(a, 7/)

(3.7
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for -1 <Rex <0.

Now, we know, from Appendix A, that the subgraphs
responsible for the multiple poles at x=~1 are the
single rungs ¥; union any disconnected logarithmically
divergent subgraphs. We call these subgraphs leading.
On the other hand, if we define M,(x) as the right-hand
side of (3.'7) but where the R operator is defined at
x==1-17 with n small positive, then M (x) is analytic
for a; <Rex <0 with a; <-1 (Appendix B). The fact
that the subtraction operator is defined at x =-1-17
is such that not only the logarithmically divergent
subgraphs, but also the leading subgraphs are sub-
tracted. The R operator in M.(x) may also be written
as a sum over all nests of divergent and leading sub-
graphs. In the region —1 <Rex <0, we may compare
Mg(x) and Mg(x); the difference between the subtraction
operators R is a sum over all nests, each containing
at least one leading subgraph. We group together the
nests which have the same minimal leading subgraph.
If this minimal leading subgraph L contains a logarith-
mically divergent piece T (itself union of several diver-
gent subgraphs), it is always possible to associate by
pair the nests of the corresponding group in order to
form

,,,,(_ 7‘;‘21(L))(1_7--&‘21(T))_”, (3,8)

and this is easily proved to be zero. Consequently, in
the difference between M, (x) and M.(x), there remain
only those groups where the minimal leading subgraph
is a union of single rungs. Given a union J of ¥(J) single
rungs of G, we obtain

225 0 -~ T2eteny] L 7))
7 {[ {wE/VJ TN TF L,
Ny
VES
where /V; are all possible nests of leading subgraphs
with J as minimal element. Now, we note that

Afa,)= T1 v, I 5, 0O Nj(a)T1P,(a)/Pgla,y),
1je.l "&s FET ¢

(3.9)

(3.10)
and, consequently,

(" T}zu(J)) {[As(ai 7)]" exp{z'[tAl(oz, 7) +E gxlpEAj (ag Z)]G}}

o{@)
- T yx.[”nchYL'H1<£1N1(‘1)H;P¢(O’)F
& i c+7J(0’)

7

4
X expliltAi(e, ) + 2 pEAi (0, oy oh, (3.11)
tu
where the graph G/J is the reduced graph obtained from
G by shrinking the single rungs of J into v(J) points.
We observe a complete factorization of the « integrals
into the single rungs on one part and the reduced graph
G/J on the other part. Moreover, the sum over all nests
N s reconstructs the operator R for the graph G/J. We
define

M[G/J](x’ t)pizy m,g)
= (- g)n-ZvU) (1)"Lw(6) /200t

«f Tda 11 dy,eml=i(a+ 5 )

0
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. R{ Ei-vu) Ny s v, Ty Ny (o)1, Py () F

[Pgr(a)

4

xexpli[tA,(a, 7)+Zzz P?Ai(a)]c/.r}}, (3.12)
where the operator R subtracts the logarithmically di-
vergent s_t_xbgraphs and the single rungs of G/J, The
function M, , () is shown in Appendix B to be analytic
for alc/‘] < Rex -0 with a’G/J - 1. ‘W[C/Jj(x) is real in
the Euclidean region, K we integrate over the variables
y; for j € J (with a small positive €), we find that

AIG(X) :Z‘/ (__ g)ZV(J)rn-Zu(J)(;nl)
J

X[l +1)]""" T(~ x) exp(~ inx)

X M[G/J](xJ’p%,m’g)n (3.,13)

Only the term with J empty does not contribute to the pole
at x=—-1, We use now the inverse Mellin transform
(with a positive ¢)
1
I.(8Y=—
o(s) 2in)
g=§{=<

o+i™

dxs™ Mq), -1<0<0, (3.14)

The presence of the functions I" makes this integral
absolutely convergent; if we push the contour towards
the left beyond x =~ 1, we use the Cauchy theorem
around x =— 1 to obtain % (s) and we neglect a back-
ground integral ~s%¢1,

The asymptotic part of the Feynman amplitude corre-
sponding to a dominant essentially planar graph is found
to be

aV( J)-1

_ A
1%5(5):? [(V(S?_ 1 370

x{I'(~ x) exp(~ inx) s*[Tx +2) "7
xm-Zu(J)(iox) M[G/J](xy t, p%’m’g)}n-i ’

where the sum over J now exclude J empty.

(3.15)

Of course, this result shows that 185(s)~s™log™"s,
where 7 is the total number of single rungs y in G,

For crossed planar graphs, we exchange s and #,
poand py. From (1,2) and (1.6), u~ (- s) and the term
exp (- imx) is absent, and we get for crossed planar
graphs

_ A
I — - s):‘; {(u(f))— N ELE

av(J)-I

) {T (= x) s¥[[ (e +2) ) 2 0 (1)

XMig ) ryle, b, 057, 8) et (3.16)

Gy FIG. 6.

where M’ is the function M after exchanging p, and py;
we note that on the mass shell 7’ =M,

4. INFINITE SUMMATION OF THE LOGARITHMS
OF s

In Sec, 3, we found the structure in power of loga-
rithms of s for all essentially and crossed planar
dominant graphs of G,. Now, we show that the geo-
metrical structure of the coefficients allows us to sum
I%%(s) over all essentially and crossed planar dominant
graphs, Of course, the sum over essentially and
crossed planar graphs are related by the interchange
S, poesp, and, then, we consider only essentially
planar dominant graphs,

Let us concentrate on all graphs which have at least
v rungs, We may represent such a graph G by Fig, 6,
where the kernels Ky, Ky, Gy, Gy, ..., G, represent a
graph one particle irreducible in the / channel, not
necessarily connected, If the graph G has 7 rungs,
there are, of course, () different ways of representing
G by Fig. 6; but if we look at (3.15), each of the ()
representation corresponds to a different contribution
to Ig5(s). Moreover, the function i;,,, factorizes
into [v(J) +1] functions; we have

‘W[G/J](xy [,f)g, ”7,‘8‘)
:‘Wkicx’fs/)iyf)%’ m,g)’xT—I,zz(x,/,b%,f)i, I)I,g)

v=1
T T G5, 0, ), @1

In (4,1), we use
"‘71?1('": /.)]‘)ﬁip%h ", g)

:(-g)"(Ki)i""(Ki)/zf MNda exp(—iEozmz)
0

XR {% expli[tA () +pt Ay(a) +P%A3(Ofﬂ}} )
1

4.2)
where the integral is attached to the vertex graph Ky
given in Fig. 7 and where we do not distinguish any-
more the rungs in K, from the other lines. The func-
tions A,(a), Ai(a), As(e) are characteristic of the
graph 1_{1 and NK1(“’) is the product of the variables «
attached to the rungs of Ky, by the product of the func-
tions N,(o) corresponding to the two particles irreduci-
ble kernels (in the / channel) N, of Ky, and by the vari-
ous P,(a) corresponding to self-energies. Similarly
Mg is obtained by exchanging py and py, p3, and py, By
convention, My{x)=1,

Now, the functions Tlgz_ are given by
h_]gi &, 1,m,g)= (= g)"‘c i'“’(Gi)/Z/ Ndo exp(- i, am?)

0
xR Li&;%%—f exp[i/At(CYﬂ} 5 4.3)
Pz, ()

Py P3

Ky FI1G. 7. The graph K;.
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FIC. 8. The graph G;.

where the functions Ng,, Pz, and A,() are similar
to the above equivalent functions but are now attached
to the two-point graph G, given in Fig, 8,

Any choice of K, K,, G, Gq, ..., G, corresponds,
by Fig. 6, to a dominant essentially planar graph with
at least v rungs, When we sum the contribution (3, 15)
corresponding to v rungs over all essentially planar
dominant graphs with at least v rungs, we obtain all
possible one-particle irreducible graphs in the / chan-
nel for Ky, Ky, Gy, Go, ..., G,.;. We define

B(x,{,m,g):Z)eg Mglx,t,m,g) 4.4)
e

where we sum over all possible graph G with the weight
Oz,
Agle, t,8,05,m,8) =2 0z Mp(x, 108,05, m,8)  (4.5)
K

and similarly Ay (x, ¢, p3, p3, m,g). We obtain for the
contribution to the infinite sum corresponding to the
contraction of v rungs

1 ot {[(-&>2 I‘(x+2)m'2"B(x,t, m,g)]

v=i

_(-V- 1)1 axvt m

X [(;%)2 I(x +2) I'(~ x) exp(- i7x) (ﬁz) xAiS Au] } et |
(4.6)

The functions A3, Ay, and B diverge as well as the
original perturbation theory, It remains now to sum
expression (4, 6) from v=1 to infinity, that is, to solve
the Lagrange problem?®
20 1 ‘?V
2o 5 L) g6 e @
This sum is easily performed in the Mellin transform
space:

- [Pygl) gk
Z)n e+ T a1 f)

However, we must be careful about the required con-
ditions for interchanging the Cauchy contour around
(~ 1) and the infinite sum over v, We choose for Cauchy
contour, two straight lines o;+iz and o +iz with
-2<0;<-1<<0;<0, and the real integration variable
z runs from ~ « to +«, The rest of the contour is at
z =1« where the functions | f(x)| and ig(x)| vanish due
to the functions I'(x +2) and I'(~ x) (and €> 0 when
needed). Now, the interchange of the Cauchy contour
and the infinite sum over v is allowed if | f(x)/{x +1)|
<1 along the contour, It must be said at this point that
since the function B(x,t,m, g) which enters the function
f&) is defined by a divergent series, little can be said
about the validity of the interchange, We prove in Sec.
5, at the lowest order approximation (see Fig. 10),
that there exist two intervals, one where 0y; and one
where 0; may be chosen such that | f()| <lo+1]| and

{4.8)
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a fortiovi | flx)1< Ix+11, K we can give a sense to
the infinite series which define f(x) and if we prove
that | fx)! < ix +1| along the Cauchy contour, then a
theorem by Lagrange' states that the equation

fly=x+1

has one root x; and only one inside the Cauchy contour.

4.9

In this case we obtain

av

3 1 v " ‘!,"(,\’ )
2\6 LD i (x);’(«'\)hm:l—_?f)&;» ‘ (4.10)

Given the function x,(/, 77, g) solution of the equation

2
(;%) T +2)m™ B(x,l,m,¢)=x+1, 4.11)

the large s behavior for all essentially planar graphs
is

g 2 9 9 S *p
(Tf?) AiB(’VOQ l’ pi; ”7,3") ‘42'1()".07 /’ /):’ '”"{‘r) (m)

7l +xy)
sinm (1 +x,)

x {1 e [<£> ’ Lxy+2) m ™0 B(x,, ¢, m,g)]} 1

oxg |\

Xexp (- imxg)

4.12)
We note that on the mass shell A5 is equal to A,,,

In the same manner, the large s behavior for all
crossed planar graph is obtained from (4, 12) by omitting
the term exp(-inx,). The large s behavior for all es-
sentially and crossed planar graphs is

g 2 2 o N *q
(-—> A13(X0, /a/)iy ”1,(.‘.,’) A?JCVO’ /a/);’ )”,,L,")<_"2>

m 1

x[1 +exp(~ imxg)] _W_(_l_ilﬂl_

sinm (1 + xy)

0 g 2 _ -1
X{l v [(ﬁ) Tlvy +2) 720 By, /, m,g]} .

{4.13)

5. LOWEST ORDER CONTRIBUTION TO THE REGGE
TRAJECTORY (SEE REF. 6)

We wish to explore Eq. (4.11) which gives the trajec-
tory x,(f, m,g), in the lowest order approximation for
the function Bfx, f, m,¢), that is, the contribution of the
graph of Fig. 9.

This approximation is certainly valid for small
coupling constant g. Using the weight 6z equal to 1/2
and (4,3), (4.4), we get the equation

2 1 / %
T_Qf da [1 - afl - (v)] =sinr(x +1), (5.1)

0

rg

R

17
To explore this equation, let us first solve two of its

approximations: the small / dependence and the small
£ dependence.

Q FIG. 9.
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A. The small t dependence
We write the solution
Xolt,m, )= A(m,g) +180m,g)+0 ),
(5.2)

where 4 (n,g) is the intercept and £ (m, g) the slope
of the trajectory, An expansion of (5,1) around ¢ equal
to zero gives

Alm,g)=-1+ % arcsin <g(}g”:> R {5.3)
o —Am2 g L AN I
3(””5’)“—“527- [1— 4 (m) ] : 6. 4)

Equation (5, 3) shows that this solution has a meaning
only for lg|<mvV2/m, and when lg! runs from 0 to
mV2/7, the intercept goes from - 1 to — 1/2. The slope
A6n,g) for this range of g goes from 0 to + <, The
value gl =mV2/7 is the limiting value for the Lagrange
problem to have a solution, as is illustrated in Fig. 10
in the simple case /=0,

The equation f(x) equal to {x +1) has two roots
¥,=A(m,g) and v, symmetrical in regards to — 5 and
the equation | f(x)I=ix +1]| has four roots, vy, 73, 7y,
and ¥; symmetrical of ; and v3 with regard to (- 1),
Consequently, the choice of ¢; and o;; which justify
(4,10) is given by vy a0y “rgand ¥ <o <¥. Atg
equal to mv2/n, 7y and ¥; (resp. ¥, and 7,) coincide
at x=—~ % (resp. - 3).

Of course, for g equal to mv 277r, the only contribution
of Fig. 9 is not valid any more, and more graphs should
be computed,

B. The small ¢ dependence (see also Ref. 3)

We write the solution

xo(f’pn,g):—l +a([,77?)g2+0(g4) (50 5)
and
alt ,m)y= iaf()idoz[mz ~ta(l - o), (5. 6)
that is,
2_ /2 1/2
(f 42311/ @m*=0"""+ (=18
at,m)={({t-4m3) |7 log {(41712— NI (= I
for £ <0, (5.7a)
a(t,m)=2[1@m* - 1))/ *arctan(t!/2(@m® - £)/?]
for 0 <t <4m?% (5.7b)

This approximation is valid for g and / small

f (x)

FIG. 10.

1502 J. Math. Phys.,, Vol. 19, No. 7, July 1978

[(xo +1) small] and is certainly bad when ¢ is close to
4m? since for any values of ¢, m, and g+0 and, for
the graph of Fig, 9, x,{t, m,g) <0,

C. Tabulation of the integral (5.1)

A complete study of the hypergeometric function
defined by the integral (5, 1) gives for Regge trajec-
tories, the curves of Fig, 11 (see also Ref, 3). Again,
the part of the curves where the slope becomes large
should not be taken seriously and higher order contri-
butions should be taken into account. At g=0, the
trajectory becomes xg=-1V¥ {# 4m®and -1 = x¢ <0 for
t=4m? For t>4m®, the trajectories are complex,

We also mention the intersection of the trajectories
with xy(¢, m,g) equal to — 1/2; we get the following rela-
tion between g/m and /m%:

g2 _ 172
72 aTg sinh <m> =1, (5. 8)

for g/m <v2/7 and consequently 0 < f < 4m?,

D. Comments on the complete series which define
the Regge trajectories

First, we insist again on the fact that Bx,?,m,g)
which enters, equation (4.11) is a divergent series and
that anything which may be said here is applicable to a
calculation up to a finite order. The left-hand side of
Eq. (4.11) is positive or null so that x,(t, m, )z - 1,
As mentioned at the end of Appendix B, and as may be
seen directly on the series Blx,?,m,g), the graph of
Fig. 9 becomes infinite at x =0. For a similar reason

- 1=x4(,m,g) <0 (5.9)

whatever the finite number of terms computed in
Bk,t,m,g) is. In fact, it may be wrong to interpret
this as an absence of bounds states. First, we have
seen in the low order approximation that the summation
technique breaks down at a certain negative x‘g‘“(g/m)
and nothing can be said above. A similar situation
should be true also if we compute more terms of B,
Also, we show in Appendix B that the poles of [M{x)/
T(-x)] and of M, ;(x) were spurious and did not occur
originally in {M,(&)/T'(- x)], Because of the presence of

X ()]

-025

-05]

-075)
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¥, (x) in the background terms, it may happen that this
background at x =0 is comparable to the leading
asymptotic behavior, This undesirable situation should
be then a consequence of our desingularization tech-
nique, but at the present time it is the only technique
we know which allows infinite summation as in Sec. 4.
On the other hand, we may remind our assumption
which says that what is negligible by a power of s in
perturbation remains negligible; the summation of all
logarithms of the power s~! does not prevail upon the
power s’ (which has no sum of logarithms), We shall
leave open this problem,

Let us finally mention that the limit £ =~ « of
B{x,t, m,g) is zero for x <0 and this implies

lim x4(/, n,8)=-1. (5.10)

PO
This is so because the leading contribution to

B(x,t,m,g) when t = —  comes from the graph of

Fig. 9 which behaves as #* when x > -1 and as ¢ " log|t]

when x =-1,

6. CONCLUSIONS

We first remind to the reader the validity of the re-
sult given in (4. 13) and which partially describes the
large s behavior at fixed / of the scattering amplitude
in ¢° field theory, The class of graphs which is con-
sidered in this paper does not include the graphs which
are susceptible to generate Regge cuts; these graphs
might in addition develop a Regge pole contribution
which is expected to complete our result by nonplanar
corrections, We consider all graphs which generate
only a Regge pole behavior and, among these, we char-
acterize a class of dominant graphs (~slog*s), We
neglect the contribution of nondominant graphs and of
the nonleading power of s for the dominant graphs be-
cause it is negligible graph by graph by a power of s,
and we assume that, when summing over all graphs,
the infinite sum of logarithms of s does not destroy
this dominance (as it is also assumed for the scaling
properties when we neglect the right-hand side of
Callan—Symanzik equation). The technique of summa-
tion used in Sec. 4 is based on a theorem by Lagrange
and is justified if there exists an interval between (- 1)
and 0 where Eq. (4.11) has one root and only one; we
have shown in Sec, 5 that such a root exists somewhere
between — 1 and 0 at the lowest order approximation,
and we assume its existence for higher orders,

The Regge pole behavior obtained in (4. 13) possesses
the following characteristics:

—The Regge trajectory x,(f,,g) is found to be the
solution of an equation which contains an infinite series
of Feynman-1like contributions. The root x,(t,m,g) is

z -1 and at the lowest order approximation increases
with / up to a certain negative xJ*(g/m) where the
procedure of computation breaks down. For a small
value of the coupling constant g (g <<mV2/7) the inter-
cept of the Regge trajectory is found to be (- 1 +g%/2m?)
and the slope g%/12m% For t— -« x,—~~1, and for

£ > 4m? the trajectory is complex.

— The signature is positive because of the symmetry
s —u of the system,
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— The residue factorizes into two vertex functions which
are also infinite series of Feynman-like contributions,
These functions are themselves dependent of x,(z, m, g),

—The pole structure appear under the form

2 -1
[1 - 5?6_0 {&7 T(xy +2) 1m0 B(xy, t, m,g)}] .

1+x

sinT(1 +x¢) m

6.1)

This form is infinite for x;=0,1,2, *** and remains
finite for x;=~ 1 as well as for x,=-2,~ 3, * * because
of the “ghost killing factor” in the square bracket [ |
[however, we have shown that x4 (¢, #,£) > - 1], The
square bracket [ ] in (6.1) does not vanish in the lowest
order approximation as long as x, <xF*(g/m) where
the summation procedure breaks down, We expect a
similar property to hold at higher orders.

—The large s behavior obtained in the paper is

3
. 1+x,(,m,g)
pli -Gt y 4 AN R4S
iZﬂ% G (4)(8) G(/i)(fl’ m,g)s <Sin7f[1 +X0(/, 7‘”,,&’)]

x B(t, b3, m, )L + exp[— imx, (t, m, )t

s *oltymeg)
+ S~ ae
X <7;73> . (6.2)

By the optical theorem, the total cross section 0, (s)
is given as

Tt (S) ~-§ ImG 4,(s,£=0) |,1§=mz for s large. (6.3)
Using the fact that the constant contribution

Gly (¢, m,g) (Sec. 1) is real at /=0, our result, neglect-
ing Regge cuts, gives

Opot (S) ~sx0(t=0)-1 (6. 4)
with an intercept which satisfies
-1=x4(t=0) 0. (6. 5)

We, of course, should not try to use the numerical
values obtained here to describe any physical situation
since the main point of this paper is in fact to prove
that, in ¢° field theory, Regge trajectories can be con-
structed. k is clear that ¢® is not a relevant field
theory for describing hadron physics, For instance,
an intercept in ¢° around (- 1) is mainly due to the
s™! behavior of the dominant graphs, In ¢* field theory,
all graphs behave as s’ up to logarithms of s, and we
expect a higher intercept; moreover, ¢4 is a strictly
renormalizable field theory, and we know that the re-
normalization group plays an important role in the
large s behavior, !” Also, it may be useful to investi-
gate the action of group symmetries on the trajectories
and, for instance, already, in qbzgu, we observe some
splitting of the trajectories. These Lagrangians have to
be understood as constructive tests before attacking
the description of hadron physics from gauge field
theories,
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APPENDIX A: BEHAVIOR OF /s {s) WHEN s - = FOR
AN ESSENTIALLY PLANAR GRAPH

A method to obtain bounds on a Feynman amplitude
when some invariants become large is exposed in Refs.
11, 14, In Minkowski space I4(s) is defined as the limit

—0 of I given in (1.5). Let us remind the reader of
the main steps which transform I;(s) into a sum of
expressions upon which bounds can be obtained.

A. Sector decomposition

First we decompose the o integration domain into
Hepp’s sectors, Each sector is defined by an ordering
of the / variables «,. The union of the /! sectors is
the original o-integration domain., Given a sector
s={o= Qgy = Uy = °* "= 04} we perform the change of
variables

o, = BBy - (Ala)
with 0 < 3, <> and 0 = fB;,; =1,
dog, =268+ B1d;. (Alb)

It is convenient to define the subgraphs R;
={a,,a,,...,a;)} so that all variables o which are at-
tached to R, are dilated by 57 in the above change of
variables,

Then, it is well known that, in the above change of
variables, the Jacobian of the transformation is
21L B0
1 1
220, 0y B (A2)
a=1 izl
and
!
Pg(a) = I1 B %01+ Q(B)] (A3)
isl

with @{8) = 0 when 5= 0 and B, independent,

We now transform the quadratic form [sA,(a) +tA,(a)
+3 4107 A (0)] into

SN (1+0:08)]
s 2 I ppetfe S0 1+Q(B)

In (A4), we sum in the coefficient of s over all s cuts
¢; ¥.(R)) is defined in (2. 4); 0 (8) = 0 when 8= 0, and
the functions 0.8 and £ (¢, p3, B) are B; independent. In
the expression [1 +/).(B)] the presence of 1 is due to
the fact that for each s cut ¢, the corresponding contri-
bution to A (a) has a simultaneous Taylor series
expansion,

+ 8 ¢, p5, ). (A4)

cs{ f=1

B. The R operator and the absolute convergence

Next, we must tell what the renormalization operator
R becomes and how it acts. The R operator acts upon
a variables of each subgraph and does not recognize the
subgraphs (except for the subgraphs R;) when the inte-
grand is expressed in the $ variables. Consequently,
before performing the change of variables (Al), we
must introduce new variables which allow the general-
ized Taylor operators 7, to recognize its subgraph ¢
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when the change of variable a ~ 8 is performed. The

R operator is expressed as a sum over all nests A/, of
products of 7 operators. If we consider only one nest
N, the corresponding 8 integrals diverge, but we know?®
how to construct for each sector §, equivalent classes
of nests I, such that for the sum over all nests in I,
the corresponding B integrals converge. We now re-
sume here the main features of this construction.

(i) Each equivalent class I is characterized by its
maximal nest ¢/ and its minimal nest Kggo

(ii) Every nest // such that K< /€ belongs to T';
each nest belongs only to one equivalent class I' and the
sum over all equivalent classes reconstruct the sum
over all nests,

(iii) The subgraphs of any nest // which belong to T
can be partitioned into the subgraphs of X and some
subgraphs of //=( — K. Consequently,

(___ 7"-21(0))__ 8l
h =

E Il i (- 7‘;21(0)) I

ET vey (A ey

1= 738,

(A5)

At this point we consider a given sector § and a given
equivalent class of nests T,

In the construction of X and //, '8 we define from the
subgraphs R the subnests K* and 4/ fori=1,...,7 such

that UK!=K and U4* =4/, and we label the subgraphs of
K* and #* by Ki and H} forj=1,...,7;- 1, Moreover,
Kic Hic Kiyc+++, and

Hi=K! N (RPUKH) (ABa)

ri-1

,E [L(HY - LED)=1(RY) fori=1,...,1. (A6b)

Let us remind to the reader that //* is never empty.

We now define the new variables upon which the 7
operators act. Given a line a< K} we dilate the variable
a, ~ a,(0%)?, and given a line ac H}, we dilate
a,~ aa(xj)zv Then, we perform the change of variables
(A1),

Theorem: We denote by ( {I) the transformation of a
function 7 (a,) into a function 75 T(8;, 0, x!). Then, the
function /. T is of the form Z T(o1/B,,B8,x}).

The proof is given in Ref. 15,

Consequently in the ( () transformation,

i\ 2L (k%)
0r) o i i o \2L ()
Po@ ™ 11 (%) ()
Kf&/\‘ i HIE”

x [1+Q(o/8, BY) (A7)

and the quadratic form [sA (a) + tA,(a) + 51,0} A ()]
becomes

A <S, Loh G ,Bx)
2y kD

_63 9 ’ ; 2’c‘”"|1+0c(07/_3,6x)]
- Ej{gj <B,> H;'gﬁ( Xifs) (1+@Q/8,8x)]

#1

+ 4B €, 05, 0/8, BY), (A8)
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where /), and £ are B,x} independent and where we use
the fact that X* contains only the empty subgraph ¢ and
#*={G}; by homogeneity we have y (Hi=G)=1 ¥V c,

2

We now apply the operators 73 %7 corresponding to

subgraphs of K by following the rules given in Ref, 12,
We get a sum of terms of the form

R g P NP
1 Bfset ULUEP-LLEP=-a5] T1 (1 -

i
fal #e,

T3P Ah (B0 (49)

with 0 <a} < w(K}) provided that all K!<c K are divergent
subgraphs, otherwise we get zero, In (A9)

“j

Map@0= 1 K[a,x m

X{ explid (s, £, 54,0/ B, )] ]
[1 + Q(O/B 5X) aig() )

(A10)

It is important to note that A(ai,(Bx) has a Taylor
expansion in the variables By around Bx =0. Using the
integral representation for the rest of the Taylor series
relative to the elements of //, we finally transform
(A9) into

) H 1— i)m(Hj) 9 w(H;'-)H
af o sl ()
a=1ﬁg {whe 4 Xs w (H)! a(x38;)

u(H;)BO
*A oty (BY) (A11)
{w(yj)<o
with
ry=1
b= Zz (4L (KY) - 4aL(H}) - ai]+ Z) [ (H) +1],
F=
(A12)
It is easy to prove that
AR)+p;> 2 [-wEHD]+ 2 1o (A13)
HY H

’

w (H)<0 wtibzg

Thus, we have proved that for a given sector § and
for a given equivalence class I', we obtain a sum of
terms, each of which is of the form

1 141
[ aB; B, A 1/ -ni(dBiBgHRi)wiq)
i=

0 0

1
xexp(—i 2, B2« Bim?)

fsl

1 w(H i
(1_ ) 7 ( 3 > w(h'j)d]
X 1 d X1
[ H;eﬁ[ A TR ETov e

{w(ﬂj)z-o

XA qf) (BY) et (A14)

i
w(H5)<0,

This achieves the proof of Bogoliubov and Parasiuk
theorem which states the absolute convergence of the
renormalized Feynman amplitudes, The expression
(A14) is also the starting point if we wish to obtain a
bound of /.(s) for large s,
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C. The behavior of /s (s) for large s

We describe now a generalization of the result given
in Ref, 14 to the case where G contains only logarithmi-
cally divergent subgraphs, Here, the numbers aj. in
(A10) are all null, and we calculate

0 {exp[l/] (S, t;p%s 0, BX] }

I
Hf, div a(ﬁeX;) [1 + (0, BX)]Z

(A15)

Because the logar1thmlca11y divergent subgraphs I\
are nonessential, (s, pi,O By) is s dependent, but
the sum over the s cuts ¢ in (A8) is reduced to a sum
over those cuts ¢’ which do not intersect the largest
subgraph K;

The expression (A15) is a sum of terms of the form

i i
Torbgr WrboigHy )WL _p)

< (Bx D" FI (B; Xr -1)

X¢(BX) exp[i/](s,i,{)i, 09 BX)L (Alﬁ)

where p, and » are nonnegative integers, ¢ (8x) is 7
independent and has a simultaneous Taylor expansion
in By around zero, and where the nonnegative integers
V(Hj) are null if Hf» is a convergent subgraph and are
smaller or equal to inf[1,2§ +p v (H)] if H: is a diver-
gent subgraph, In (A16) we have

2 _ ! i (el -1)[1 +0.0, dx)]
A(S,t, pi,0,Bx)=s ? ’_131 (Biniq) i 1+ Q(O, BY)

+ (B € 4,53, 0, BY), (A1T)
Where, of course, because of the property A H"

- KM_ +++, we have only one possible varlable )\, -1

in front of the square bracket [ ]. We now mtegrate
over the variable B;; using p; + 21 =— w(G) ~ 0, we get

i
T(y) sFerer f I1 [dp, B3i+ni]
0 izl

H dx,
H div

1-1 2L b,y (HE et
X TL(Byxh g) TePer e frymt) ry o)
i=1 4
141
Xd)(Bx)[ilnfleiZ% g
i=

' ﬁ%-l 7”3]' - 174 (Sa /3 /)3, 0’ B,\')r”/ﬁﬂw

(A18)

where

y=n +CE, Pe — w(G)/2, (A19)
and where all variables x} are set equal to one for con-
vergent subgraphs Hi, We must note that with the defini-
tion (1.5) of a Feynman amplitude, the masses m® have
a small negative imaginary part and the invariant

s, 1, p? a small positive imaginary part, so that at

€>0 the square bracket [ ] in (A18) has a positive real
part. At this step, we may use the following integral
representation:

LO)( A+ B)7= {l—f

2w ogr i

dzc,} crI L~z +p)

«[L (2 ,=p N+7]

F[;?(zc.—ﬁc'ﬁﬂ'{l/” i -
(A20)
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for Rey>0, ReA, >0, ReB>0 and with ReZ_.=p,. <p,.,
and § -p. > w(G)/2 —n, For ¢ >0, the above integral
representation can be introduced in (A18) and the inte-
grals over 2. and over the variables 8 and y may be
interchanged in a region of p. to be defined later on.
For each term (A18), we define the multiple Mellin
transform M(z,) by using (A20), We get

P s+i™
1 ¢ L 2.
14— dzg > s ¢ ° Mz,
s {“/ : } ),

with M(z ) given by

(A21)

M@E =TTz, +[)c,)1_‘(z‘> 2, +n— w;G),>

1
< s oo
0

# A
%] ; div

i piHE
2Ec,ac,yc,(Hri_1) v 'i'i)

1-1 .
T (B0 6 (6%

1t 2yl 0y 1+ 0,00, 8 ]‘c'-’c'
. B { Yo' -t
11 [ i 11;11 (Bini-t) : { 1+Q(0, BY) }

-1
. 2,..92
. [71ni1 +zj$_1, BEr e By miy

- i, b2, 0, BY)] e ""“(G”} . (A22)
It is clear that the multiple Mellin transform does have
a simultaneous Taylor series expansion around 3; and
x§ equal to zero, and, consequently, we may explore
from (A22) the region of analyticity of M(z.). The in-
tegrals in xfi-1 converge if

227 peryelHy ) > = 1+ v(H, ) for H.Y div. (A23)
-4 i
The integrals in 8; converge if
220 pever (H ) > = (20 +py), i#l, (A24)
¢ i

We note that (A24) is really a condition for Hi,--1
convergent since it is automatically satisfied by (A23),
the values of v(H ;) and (A13) for H! _, divergent. For
each term (A18) the inequalities (A23;, (A24) p, <D,
and ¥ +p, > [w(G)/2 - n] define a convex polyhedron in-
side which any point with coordinates p,, may be used
to calculate the integrals (A22), The fact that such a
polyhedron is nonempty justify the interchange of the
B, x, and z integrals.

To find the large s behavior of a term of the type
(A18} we must find the minimum (J ,p.) over all points
of the polyhedron, F A is such a minimum, then a term
of the type (A18) behaves for e >0 ! as s* up to loga-
rithms of s. We do nof prove here that this result re-
mains valid for ¢ — 0 provided that the integrals (A22)
exist, It remains to compare the different values of 4
obtained for the different terms of the type (A18), that
is for the different values of , p.., v(H; ) and for the

FIG. 12,
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different sectors and equivalent classes of nests, This
is a difficult task for the most general graph which
contributes to GZ(4), and at the present time we have not
been able to justify (although we have no counter-
example) the general rule given in Ref, 9, Anyhow,
if

§o= Sup{A},
then

(A25)

[I5(s)| <cs™", n>o. (A26)

D. Proof that 2 < - 1, graphs for 2 =-1

The remaining part of this appendix proves that
@ < -1 and determines the graphs such that Q=-1,

We consider a connected subgraph ¢ of G with n{¢)
vertices and N(¢) external legs and an s cut ¢ of G
which splits ¢ into y connected parts. Of course, n(y)
= x; moreover, N(¢)= x because if there exists one
connected part without an external leg of ¢, then the
s eut of G split G into more than two connected parts
(with py and p, on one side, pg and P4 on the other side)
and c is not an s cut of G, Consequently,

n(@) + N(g) = 2x, (A27)

Let us characterize the graphs satisfying the equality
in (A27), From n(¢)=N(¢)=Yy, we get I(¢)=y and then
the number of independent loops is L{¢)=1, K we call
1.(¢) the number of lines of ¢ cut by ¢ and L_(¢) the
number of independent loops of ¢ destroyed by ¢, using

I{p)- L(@)y=x-1=y.(0), (A28)

we see that either L (¢)=1 and all lines of ¢ are de-
stroyed by ¢ (examples of such graphs are given in
Figs, 12a, 12b) or L (¢)=0 and all lines of ¢ but one
are destroyed by ¢, In this last case, since we have one
loop and one line only which are not destroyed by ¢,

we must have a subgraph ¢ with tadpole as shown in
Fig. 13,

We note that the subgraphs of Fig, 13 does not occur
in G and the subgraphs of Fig, 12a—12b occur only in-
side self-energy parts or 3-external legs vertices;
otherwise, G is not essentially planar. Because (n{(®)
+ N(¢)| is equal to [4 — w(¢p)] which is even, we just
proved that except for the subgraphs of Fig. 12a—12b,
for all connected subgraphs ¢ of G, we have

n{@) + N(p) = 2y +2, (A29)
that is,

w(@)/2y.(¢) = -1, (A30)
For disconnected subgraphs ¢ =U;¢;, since

w(¢) :ZJ w(e;), (A3la)

vo(®) =§7 ve(@:), (A31b)
N'—<%Nz FIG. 13,

; .
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FIG. 14,

we have

w(9)/2y,(@) < suplw(9,)/2ye(¢))] < - 1 (A32a)
provided that any connected part ¢; differs from a graph
of the type given in Fig, 12 {since w(¢;) <0,

[w(w,)/v, (@) is = = for y,{¢;)=0). For a given nest

N, we call “bad cuts,” those cuts (if any) which inter-
sect a subgraph ¢ </ in a way described in Fig, 12,
For any “good cuts,” (A32a) is valid. Since the graphs
of Fig, 12 cannot be essential, for any subgraph we
have

w(@)/2v(0) « -1, (A32b)

With any subgraph 7T of the type given in Fig. 12,
we associate a line ¢ which is one of the external leg
to the self energy which contains T or the external leg
to the three-external legs vertex which contains T and
on the same side of the 5 cut ¢ (see Fig, 14),

Of course, ¢’ is an s cut as well as ¢, and f does not
belong to a graph of the type given in Fig. 13 for the
cut ¢’, Given a nest of subgraphs, it is always possible
to find a good cut ¢’ which avoids the situation of
Fig, 12 for any subgraph of the nest.

We consider a polyhedron defined by (A23), (A24),
Per by and 3eep.r - [w(G)/2~n), Such a polyhedron is
related to the large s behavior of a term of the form
(A18), When » varies, we obtain nested polyhedrons
PSPy -2 P, 0+ and consequently A{n=0)
> An=1)>+++_ Since we look for the sup{a}, we keep
in mind A(:=0), Similarly, in (A23) when the quanti-
ties v(H},.;) vary, we obtain nested polyhedrons [y,
with [Jigy = ¢+ * 22 P(maxy where

pex(HL )= inf[1, 2? Porver (Hy ). (A33)
Consequently, the largest A is obtained for a(r=0,

{vh={v™*}), The same kind of arguments does not apply

to the variations of p,., because v™* is p_. dependent

and the various polyhedrons obtained, when p_., vary

are not nested {the inf condition in (A33) prevents

the polyhedrons to be empty],

We define

Af :if,f {sgp <§‘O—C%>} ,

where inf is taken over all “good cuts” ¢’ and sup runs
over all graphs of the nest such that y,.(¢) >0, and over
G. In (A34), a() stands for ~(2i +p;) corresponding to
the subgraph (g:Hii"“ We note that

AlE -1

(A34)

(A35)

since we have

< a(@)
as { e T (w)}

for any “good cut” ¢/, From (A13) we see that
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- @i+py) < w(Hfiq) (A36)
then,
s -1 ¥ 0 (>0, (A37)
and this proves (A35), Now,
Al =0, {V}={vp ) < &, (A38)
Proof of (A38): We consider a “good cut” ¢ and a
graph ¢ such that
&' = a(()/2y:(p) = suple(¢)/2vz(e)]. (A39)
Now, we consider the point P
@g==~1" if po»=0 and c’'#¢,
Plyg,=+n ifp,.>0 andc’#c, (A40)
(gz=4" 1,

where 7 is positive and small (n* < 7). Clearly p,s P,
since A’ <0, Moreover, (A23), (A24) are valid since
A= o(@)/2y;(¢) for any ¢ such that y;(¢) #0; for those
graphs H; . which are not cut by ¢, the left-hand side
of (A23), (A24) is strictly positive if at least one p is
positive (and if that ¢’ cut Hj, () while the right-hand
side is negative or null (if all p_- are null for the cuts
¢’ which intersect H .(, the left-hand side is negative
as close as we wish from zero and the right-hand side
is less or equal to - 1). Consequently, P belongs to the
polyhedron 2 (max). On the other hand, (J .p,) is as
close as wanted from the diagonal hyperplane {3 p,
= A"}, This hyperplane crosses the polyhedron /2 (max
or is tangent to it, and this proves (A38).

Since € is the sup over all possible A and since we
have (A38) and (A35), this proves that =< -1,

Finally, we determine the conditions for @ to be -1,
The expressions in (A38) and in (A35) must become
strict equalities, (A38) is an equality if the hyperplane
[z #Pe) = 4A'] is really tangent to the polyhedron
Prmax. Let 7 in the coordinates of P becomes 0; then,
the point P belongs to the boundary of the polyhedron
defined by the edges

22ipeye () =0 (Ad1)

for the divergent subgraphs Hﬁi_l such that there exists

¢’ with p.>0 and y_. (H: ) >0,
220 Poever (Hy )=~ (@i +p;) (A42)

for the convergent subgraphs H: _; sueh that ZyE(Hji 1)

= (27 +p£)1

—pe=0 (A43)

for those cuts c’#¢ such that p =0. We suppose that
the graph G is such that w(G) <- 2 since the case w(G)
== 2 is trivial. The condition for the graphs H: ; in
(A42) is such that

2i +p,

_ .- w(Hi‘--I) N
23’5(}131.-1) " Zﬁ’a(H;iq)

1 =1,

{A44)
80 that (27 -+p;)=- w(Hf:i-l) which is the case for instance
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if k% 1s empty and if Hﬁi-izR"q Moreover, these graphs
should satisfy 2y;=- w, The other “good cuts” ¢’ should
be such that v, <y; because of (A32a). A property of
convex polyhedrons'? is that if the diagonal hyperplane
is tangent to the polyhedron in P, it may be generated
by linear combinations of (A41)~— (A43) with nonnegative
coefficients. It is clear that this is only possible if all
vo =¥z for all good cuts ¢’ which intersect the conver-
gent subgraphs of (A42),

We now prove that a graph ¢, such that
ve (@) =ve(@)#0
for all “good cuts” ¢’ relative to a nest A/ which contains
¢, and such that
w (@) =~ 2y3(¢) (Ad8)

is the union of single rungs (Fig, 5) and of logarithmi-
cally divergent subgraphs.

(A45)

First, since ¢ is a “good cut,” for each connected
part ¢; of ¢, we must have

w () = - 2v5(9); (A47)

otherwise, (A46) is not possible, Now the connected
graphs which satisfy (A47), also satisfy

n(p;) + N(g) =2y +2

where n{e;), N(‘Pi), and y are the number of vertices,
external legs of ¢; and the number of connected parts
obtained after intersection of ¢, Using again the inequal-
ities n(¢;) = x, Nl¢;)> x, we see that most connected
parts should have only one external leg (Fig. 15), But

if @ is a good cut, clearly ¢’ is also a good cut; we

have y, < vg since ¢’ cut ¢, into {x — 1) connected

parts and, consequently, by (A45), one external leg
connected parts are not allowed. We are left with the
only other possibility: There are two external legs

for each connected part (N(¢)=2x). Then by (A48),
n{@;) =2 and we obtain a single line. The only single
line which satisfies (A45) is an essential single rung as
shown in Fig. 5. Consequently, ¢ is a union of single
rungs, and of divergent subgraphs since these divergent
pieces are not cut by the “good cuts” and do not destroy
(A486); such graphs ¢ are called leading. We proved in
the same time that if, for a convergent nonleading sub-
graph 3 and for a “good cut” ¢, we have w(f)=~ 2v.(2),
then there exists a “good cut” ¢’ such that v (%) <»,(2).
For the leading subgraphs ¢, we have for the “bad cuts”
¢", y.u>vs, and in the system (A42), (A43), we need
Eq. (A43) for ¢’=c” (pg«=0) in order to generate the
tangent diagonal hyperplane in P; (A41) is then useless,

(A48)

We just proved that, for those graphs which contain
at least one single rung (Fig. 5) as essential subgraph,
we have Q=-1.

APPENDIX B
A. The single Mellin transform Mg (x)
The single Mellin transform is defined in (3.7). The
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operators 7 which enter in R are sensible to divergent
subgraphs [by P.(a,y)] and to essential subgraphs [by
A (o,9)]. For an essential subgraph ¢, we have a sub-
traction only if

E'[2y(9)x]= 0

with E’(a) defined as the smaller integer larger or equal
to Rea, and where x is taken between ~ 1 and 0,

w (@) - (B1)

By (A32b), the ratio {w(¢)/2y(¢)] is always smaller
or equal to (- 1), Consequently, for Rex larger than
(- 1), no essential subgraphs are subtracted, The same
analysis as the one performed in Appendix A for the
Feynman amplitude /;(s) can be written for M) with
explisA,(a,y)] replaced by [A (a,»)]*. We just mention
here the technical differences, Since all subgraphs K*
are nonessential, only the subgraphs Hf,i_x might be es-
sential because of the nested and alternance properties
of the K’s and of the #’s. Then, we have

i 2
AL B, 04/ B) = B,x,,-,f“”w-ﬂ[r n (g >

[

X T (g e { 140,60/ mﬂ .
HI
i

i
v (K

1+Q0/53, 8x)

(B2)
Consequently, p; in (A12) has to be replaced by

Pale) =py + 29 (Hy )%, (B3)

At 0 =0, the part of the square bracket | | in (B2)
which is not @ or /), is a function of (§; xf,i_1) only.

The equivalent equation to (A15) becomes

¢
M-x) I ——p
)Hjcuv 3 (B x5)

{ [(BLX"J-J) zy(Hri-i)A (BiXb ] exp (l (ﬁlxi)zé <15 P%; 0) ij)) }
(1 +Q(, Y)Y ’

(B4

If we denote by »n the number of derivatives per-
formed over the exponential and by p,. the number of
derivatives performed in the square bracket | | of
(B4) over the terms corresponding to an s cut ¢’ which
does not intersect any Ki, we get, up to multiplicative
factors,

T(=x +25 b (BxiP"
<
7-1 Ly, G gt s
x Il (thii-t)znc Bt Wy pmgd Uty 1 ey )
f51
; ~2ytHE ) ; x=L _+p ¢
xdBOBixd,-) T ALBXG, 0 T
xexpli (Bx§)* & ¢, 3,0, BY)],

where ¢ has a Taylor expansion in £; x,' and is 3; inde-
pendent and where V(Hi -1) satisfies the same inequality
as in Appendix A since v(H’ _4) is null for a divergent
subgraph. We now integrate over 53; and obtain

(B5)

F(—x+YP )I‘( ;G)+n+x>
1 -1 o " i
x f 0 [dB, 8 ¢ T dxio(By)
0 i=l H}dlv
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ZECI lyc:( 1)'3'(” 1)]P s v ..1)

1t
X 1T (8ixs -1)
#=1 i

1=t : : 1+ 0. 3 x-Ec.Pc.
- 2y .(H‘ 1)=2v(H _)l “ ! ; X)l
X{Zinx (Bexe,-) e o }
¢’ s

(1+Q, Ax)]
x[im}, = i& ¢,63,0, B} @2, (BS)

To evaluate the analyticity properties in x of the ex-
pression (B6), it is convenient to use (A20) to transform
the sum over ¢’ in the curly bracket { } into a product.
This leads exactly to the multiple Mellin transform
(A22) if we write (B6) under the form

gc,+i°°
o 12w o, -i%
[

Since the single Mellin variable x is the sum over all
s cuts ¢’ of the variables 2z, it is easy from Appendix
A to describe the analyticity properties of Mg {x) in x,
It was found there that a lower bound of analyticity in
x is given by €< -1 and equal to (- 1) for the graphs
of Sec. 3. On the other hand, we may look for an upper
bound, We consider the point P:{p, =0} for all s cuts
¢’, Such a point may be on the following edges of the

} Sk ~27 200 Miz,). (B7)

polyhedron defined by (A23), (A24):

22 perver (HY 1) =0 (B8a)
for H‘ ;- divergent and if 3 ¢’ such that p, >0 and
Ver (H .-1) : O’

P = 0 (BSb)

for those s cuts ¢’ such that p, =0. It is impossible

to generate a diagonal hyperplane tangent in P at the
polyhedron by linear combinations of (B8a) and (B8b)
with nonnegative coefficients, except for the case where
all p,. =0 [(B8a) is then useless]. P is then on the
diagonal hyperplane (3 ,-p,» =0) and that corresponds to
the pole of M (x) at x =0 which comes from the Euler
function I'(- x), We just proved that M;(x) is analytic
for 2 <Rexr <“0, and in Sec, 3 for ~1 <Rex <0, Itis a
consequence of Ref, 14 that M;(r) is meromorphic with
poles at Rex=0,1,2 due to I'(-x) and Rex = &,

agz < R, due to the ¢ integral., The purpose of Sec. 3
is to define the analytic continuation of M) for

a; “Rex << -1, and to extract the structure of the
residue at x =~ 1,

B. The function 11_4‘6 {x)

We define the function M;(x) as the right-hand side
of Eg. (3.7), where now the subtraction operator is de-
fined for a; <Rex < -1,

The R operator still subtracts once the logarithmi-
cally divergent subgraphs but it also subtracts once the
leading subgraphs [essential subgraphs with w(¢)
== 2v(e)]. Such leading subgraphs were shown in
Appendix A to be a nonempty union of single rungs with
a union of divergent subgraphs., To find the analyticity
properties of M (x) in x, we must reproduce Appendix
A for this function. Let us give the main differences.
The case G leading is trivial, and we consider G not
leading.
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First the elements of X are now divergent subgraphs
and leading subgraphs. In the nest KU/, divergent
subgraphs contain only divergent subgraphs and leading
subgraphs contain only divergent and leading subgraphs,
The largest K* being either divergent or leading all
HYg except Hf,-i are divergent or leading, We have

y(E)Zy(H) 2 y(Kly) Vi, j=1,2,...,7 -1, (B9)

The function A (&) becomes now

29(kt) 23»(H )

/ 1'1 (8:x3)

J

Ay(Bx,0/8) = g (@3/8,)
E

2 U(O,/B) e 4

[ 2y (xf) 2yp(kt)

X115 x,)z”c”fﬁ 2 { +0,(0/8, sz}]

a 1+Q(0/8, BY)
(B10)
and p, (x) becomes
pf(x):pﬁz[?;z V() - 2,y<K;>] x (B11)
al K
with
ri=1
pi=2 [4L&)-4LHD]+ 22 M)+ 2 Q).
iet # atv #} leading
(B12)
We define
V= Ev(m)—zy(f\) y(ff’.-x)+W (B13)

f !

The quantity Wis <0 but V may have all signs ex-
cept if H; _ is leading where V>0,

When we set 0 equal to zero in the square bracket
[ ]in (B10), we obtain, except for the functions /), and
@, only a dependence in (5; xfi_i), The reason is the
following: K ¢ is divergent or leading, v.(¢) is equal
to y (@) for all “good cuts” ¢, When we set 0 _; equal to
zero all terms of the square bracket disappear except
those corresponding to “good cuts” ¢/, Such a cut ¢’ do
not intersect the divergent subgraphs of any H§ and con-
sequently v (H?) is equal to v (H?) and the variables
(8; x}) disappear. Then

2ytkt) Hi)
! 7T AL(Bx,

. 2¢
1@/ e )
£ y
: a2yt o § 140,00, 8Y)
- 5-\ i i 2y (Fl,.i i) Zy(Hri 1) 1
[_./ i*l(B‘xrri) 1+ Q(O, :BX)
(B14)
After taking the derivatives 3/38x on the divergent and

leading subgraphs H!, we get an expression similar to
(B5) where now

0= V(Hi‘.q) <inff1, 25_? (ver (H:iq) ~y (Hﬁi-i))/)c'] (B15)
for divergent and leading subgraphs H! o and zero
otherwise, The integration over §; glves back (B6)

where now we have also integrations over the variables
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x% corresponding to leading subgraphs and p,;(x) is given
by (B11), We then use a multiple Mellin representation
of (B6), and we obtain “polyhedric conditions” for the
integrals in (B6) to exist. We get, instead of (A22),

1

2i+p; (x)-1 ;

x/ 1 [dﬁiﬁ T b a
0 i Hj leadineg
1-1

. 2T Oy L (HE ) ey(HE MazgeviHE
XIUBh ) o e et
i1

1

£ormpg
X (8x) i ['li':% (((?, ﬁfx)]

-1
<limf i LB By,
Fe1

-[Ec:zcnvn-m(c)/ZJ

~iE (t, b3, 0, BY)] (B16)

Absolute convergence for the variables x;'~ requires

25 (ve (Hii-ﬂ -y (Hrii-x)] (B7)

o

Per =~ 1+ V(Hf"--i)’

and absolute convergence for the variables 3; means

233 Lo 0 = (8, Do+ 2 [ 2y
(B18)

K

- mm} (2 per) > = @i+pp) +viHE ).

In (B17), H ,_1 is either a divergent subgraph or a
leading subgraph The polyhedron of definition for the
integral (B16) is given by (B17), (B18) and by p, <p,,
% e'Per > w(G)/2 - n, Again, we look for the hyperplane
(3 orpo+ = A) which is tangent to the polyhedron and be-
low, and we look for the polyhedron which gives the
1argest A, Then, we take n equal to zero and v(H: _1)
equal to v™**(H: ‘_1) defined as the right-hand side of
(B15). We note that if H‘,-1 is divergent, (B18) is auto-
matically verified by (B17) and (B11), (B12), It is
convenient to rewrite (B17), (B18) under the form (with

* replacing v)

20 vor (Hy o) pon > = L+ VP (HE ) it H} 4 is div,
[+

(B19)
Hi ) = y(H, )b,

o> =1+ mE(HE )

22 [ycu(
i+
if H, _; is leading, (B20)

where ¢” are “bad cuts” which intersect divergent
subgraphs of H’l’r“

25_7/ [J’C'(Hf-iq) + Wo > w(H, )~ 2W
- L - B @) +vmeH L), (B21)
Hj. div Hj.leadins !

for any convergent subgraph H'--t, leading or not, In
(B21), we exclude the case where Hi - is the only ele-
ment of //* and where
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W=y (K ) ==~y (H ) (B22)

since this case is already taken into account by (B20).
In all other cases, [y «(H: .1) + W] is not necessarily
positive, except for H. _ ieadmg We now prove that
the right-hand side of (BZl) is negative or null.

— K H! _, is leading w (H! -1) is (- 2v(t _1)] and
[w(HE _1) -2W)=-2Vis negatwe or null the remain-
ing part is also trivially negative or nu11 We note
that the right-hand side of (B21) is null in this case
only if (B21) is equivalent to (B20) (with v™**=1); this
being excluded from {B21), we conclude that if Hi{_1
is leading, the right-hand side of (B21) is strictly
negative,

—I Hfi_i is not leading but convergent, v™* is null,
(W+y(K __1)] is positive or null, so that we must
prove that [w (HE ) +2y (K’,_i)] is negative or null, The
subgraph K’,_1 pz)ssesses y(k* ) single rungs; each
single rung has four adjacent imes Let g be the num-
ber of adjacent lines in H} ;-1 and let ¢ be the subgraph
obtained from H‘i_1 after cuttmg the » rungs and the

q adjacent lines, Let ¢’ be the number of loops de-
stroyed by the cutting of these lines; we have

w(@) =<0, (B23)

q' < E@/2) <q/2. (B24)
Now,

w(H ) =w(9) ~ 2y (K] 1) - 2¢~ 47", (B25)

This proves that [w (K} o) T2V (K ,_1)] is negative or
null and then that the rlght -hand side of (B21) is nega-
tive or null, For this quantity to be null, we must have
the following conditions: Hf .- IS a convergent nonlead-
ing subgraph and A {H’ .1}, w(p) =0 which implies

q >0 since Hi,_i is not leadmg, and the ¢/2 pair of
ad]acent lines form with the single rungs of X! el
¢/2=q’ independent loops, In this case

y(HL )=y KL ) - q/2 <y(EL) (B26)

and for all “good cuts” ¢’, the quantities { v (H: ;) + W]
are equal and strictly negatwe° We may now look for the
hyperplane (3, .-p, = A) tangent to the polyhedron and
below, We first note that since G is not leading, the in-
equality 23, -p, > w(G) is a special case of (B21) for the
index i =1, We define

s a{Hr;-1)
A ﬂlcr}f{sup <5 (H:',,-i)>} (B27)
where inf is taken over all “good cuts” ¢’ and sup runs
only over theindices ¢ such that 8,.(H: _1) >0, The quan-
tities a(H‘i-J are the right~-hand sides of the inequali-
ties (B21) and B.(H! ,_1) is the corresponding coefficient
of p, on the left- hand side. Since B, (H _1) - 0, a(H',_1
is strictly negative (at least for H: AT (; we have
B ¢ > 0) Then

CARVEN

-1+ (0@t - T
Hj div
- D@+ falye ) W (B28)
H, leading
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is less or equal to (- 1), It is equal to (- 1) if 4

—{H‘i_i}, Ktis empty or K! _, is a divergent subgraph,

so that W=0, H‘__1, is leadimg and there exists a “bad

cut” ¢” such that b >0, ycu( ) >y (HE - It is also
T

equal to (- 1) if A ={H] i}, H  is convergent non-

leading, and if w(Hf.i_l) == 2y, ‘(Hf-,--l)

Consequently,

AT =-1, (B29)

Now, we prove that A < A’, We define ¢ as one of the
subgraph H;_;, and the “good cut” ¢, such that 5;(¢) >0
and

&' = o (9)/8:(0)> a(9)/B:(9) (B30)

for all ¢ such that B;(¢) > 0. We consider the point P
such that

Py==-17 if p,o=0 and ¢’ #c,
pp=+1" if p>0 andc’#C, (B31)
pz=4a"+7,

where 7 is positive and small (n® <n? <), The point P
is as close as wanted to the hyperplane (3 ,-p,r = 4A'),
The point P satisfies (B19) and (B20). For (B21), either
vz + W] is negative, and since 4’ is also negative (B21)
is valid; either [y; + W] is positive and by (B30), (B21)
is valid; or [y; + W] is null and (B21) is valid because
the right-hand side of (B21) is, then, a strictly negative
integer. Consequently, the point P is inside the poly-
hedron for n small and positive, and

A A, (B32)

It remains to show that when A’'=-1, A <4/,

We consider the point {p» =0 for ¢”#¢, p;=~ 1},
This point is on the following edges of the polyhedron
defined by (B17), (B20), (B21):

z@ VerlH} 1) P =0 (B33a)
for Hf.‘-l divergent and if 3 c” such that p . >0,
yc”(Hﬁl ) >0,

22 [ver (Hy ) =y (Hy )] per =0 (B33b)
for H1.-1 leading and if 3 ¢” such that p » >0,
Vc"(Hi.-i) v( i-i),

ZZ\/ [y (HE .-1) + Wpg=w(H -1) 2w (B33c)

for Hy _, leading, if /' ={H} b WeE=y(H ), 3 c”
such that Dew >0, v u(H ,_1)> v(H ;-1)’ and for H* ., con-
vergent and nonleadmg, NEA = {H‘t'l} in both cases we
must have w(H,{_1)_ 2yz(HE ;'1)’

(B33d)

for p» =0 and ¢’ #c, We must find a linear combination
of (B33a)— (B33d) with nonnegative coefficients which
generates a diagonal hyperplane, I (B33c¢) is used with
H:‘_i leading, for all “good cuts” y, =y;, but for the
“pad cuts” ¢”, y,» >y; and since p,» >0, there is no
way of obtaining a diagonal hyperplane, K (B33c) is
used for Hﬁe_l convergent nonleading, we proved at the

—pc::O
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end of Appendlx A that since w (i} r-t) = - 2y (HE ,-1); there
exists another “good cut” ¢’ such that Vor <Vz and clear-
ly again there is no way of generating a diagonal hyper-
plane, Consequently, if A’=-1, A is strictly less than
4A’, We have just proved that a lower bound of analyticity
in x for M {x) is given by a number a;, <-1, Let us

look for an upper bound.,

We consider the point {pc: =0 ¥ ¢’}. This point might
be on the edges of the polyhedron, First, it might be on
the edges {- p,- = p, =0 for all ¢’}, In this case we do
generate a diagonal hyperplane by linear combinations
of the edges with positive coefficients and this explains
the pole at x =0 in I'(- x), The above point may be on the
edges (B19), (B20), but it is impossible to generate a
diagonal hyperplane (with positive coefficients) between
them and with the edges {— Per==D :0}. On the con-
trary, the point may be on the edges (B21) when H‘ . is
not leading convergent and the right-hand side is zero
in this case the quantities [v, + W] are negative and
equal for all “bad cuts” c”, with the edges {- p»=—p =
=0} we may generate a diagonal hyperplane even if
Ve > Vg

We have proved in part B of this appendix that M ()
is analytic for a, <Rex <0 with a; < -1 and that in
some cases the pole at x =0 is not only due to the Euler
function I' (- x) but also to the a integral.

C. The function /17(;/1 {(x)

The function Mg, ;(x) is defined in (3.12) and is found
to be the product of several functions M— and of two
functions Mx defined respectively in (4, 3) and (4, 2),
Their peculiarity is that [N, /Pci] and NKt/PK ] are
homogeneous in all varlables a, of degree respectlvely
equal to (- 1) and zero. The operator R subtracts the
leading and the divergent subgraphs of the kernels G;
or K;, If we perform a decomposition of the « integrals
into Hepp’s sectors and into equivalent classes of nests,
we obtain for the functions [N, /Pz.] and [N, /PK ], two
expressmns similar to the exp‘ressmn (B10), For some
graph ¢' which are the union of a subgraph ¢’ in the
kernels G; or K, with some lines external to the kernels,
the functions y _(¢) are given by

,)_ 5((0), Ve

where &(¢) is zero, one or two if ¢ has zero, one or
two more independent loops than ¢’, Some coefficients
v.(¢) may become negative, The graphs Kj are neces-
sarily leading or divergent and belong to the kernels
K; or G;; only Hirt may have external lines to the
kernel,

v (@) =y (¢ (B34)

It is easy to see that, since

H (=R'UKL (B35)
if R*=R"? U{l}, where R'! is a possibly empty subgraph
of the kernel, we have

Hy o =H I}, (B36)
where H",-l belongs to the kernel and is (R’} U Kii_i)
Consequently, to any equivalent class I" with the

nests K¢, //*, we may associate an equlvalent class I
with the nests K’' =K*, /" ={H}} =H! H"_l} built
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uniquely with graphs in the kernel, ¥ now we look for
the polyhedric conditions of analyticity, we get (B17),
(B18), py “hy and [1 - 8(G)(F p)> w(G)/2~n, The
smallest polyhedron is given by v=v"* and n=0 and
we obtain the conditions (B19), (B20), (B21),

From the entire graph K;, we get no condition since
5{Gy=1; from the entire graph G,;, we get

Z/ﬁc' —w(G)/2.

Since w{G;) < 0 (it is zero for the graph of Fig, 9),
(B37) contains Z py <0, From the graphs H‘,_i such
that their part H’f_1 in the kernel is empty, we get no
condition since they have no loops, Now we prove that
for all graphs H. _;, the conditions (B19), (B20), (B21),
LetPer © 0 define a polyhedron which completely contains
the corresponding polyhedron obtained from the corre-
sponding graphs H’f-1 in the kernel, The conditions
(B19) and (B20) are the same; we prove that the condi-
tions (B21) for H”_1 leads automatically to the condi-
tions (B21) for H‘._t. We have from (B34)

(B37T)

22 [ vo(ty ) + Wlp,e
¢
=2 v H ) + Wpg = 28(H;, ) Qo ), (B38)
and, since @C:pc:) is negative or null,
23w (Hy )+ Wlpge= 27‘[v v+ Wi, (B39)

On the other hand, w(H, "i'l) > w(H’.-i) since each loop of
Ur .t which is not in Hji.{ contains independently two
exte1 nal legs to the kernel. We proved that the tangent
diagonal hyperplane from below o the polyhedron
described by (B19)— (B21) for the graphs Hi,.; is below
or equal to the tangent diagonal hyperplane to the
corresponding polyhedron for the graphs H.’-§-1 which are
all in the kernel, Thus we have for region of analyticity
in x of F(—.\')ﬂci(;‘(),

ag, “Rex -0 (B40)

i

with az, <-1. A similar relation holds for I'(- x) Mz, ).

The singularity at Rex =0 might, in some cases, comes
from the & integral. Finally, the region of analyticity
in x for M, () is given by

agq, 5~ Rex <0 (B41)

up {ag,, 4%;) < -

with ag, 5 =84
GiK;
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Let us mention that the singularity at Rex =0 which
comes from the a-integral (as in Fig, 9 for instance),
is present simultaneously in M;(x) and in some of the
functions M;,,(x) and is spurious since it was absent
from Mg{(x), This spurious singularity is due to our
method of desingularization, but this method is at
present the only one we know which allows the summa-
tion of Sec, 4,
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A note on recoupling coefficients for SU(3)*

D. J. Millener

Brookhaven National Laboratory, Upton, New York 11973
(Received 6 February 1978)

A 6-(\p) coefficient, denoted by Z and different from the usual U coefficient, associated with a specific
recoupling of three irreducible representations of SU(3), is defined. A general 9-(Au) coefficient,
analogous to the unitary 9-J coefficient of the angular momentum Racah algebra, is then expressed in
terms of the Z coefficient and two U coefficients. In this way problems associated with the existence of
outer multiplicities in the products of irreducible representations of SU(3) are circumvented.

1. INTRODUCTION

Classification according to SU(3) of the spatial part
of wavefunctions for light nuclei provides a good basis
for shell model calculations. The most efficient way to
perform such calculations is to first make an expansion
of the effective interaction into SU(3) irreducible tensors
by appropriately coupling togther the creation and
annihilation operators for particles in individual
oscillator shells.'™® The evaluation of many-body matrix
elements in terms of single shell matrix elements® is
then reduced to an exercise in the use of the Wigner—
Eckart theorem and recoupling techniques for the
groups involved. The spherical tensor formalism
employed in the Rochester —Oak—Ridge shell model
code® carries over almost unchanged to the present
problem, the only essentially new feature being the
appearance of outer multiplicity labels for SU(3)
couplings. Draayer and Akiyama have given algorithms
for calculating Wigner and Racah coefficients for SU(3)
in the most general case® and have provided computer
codes for evaluating these coefficients.® Their results
are sufficient for shell model calculations within a
single major shell. For more than one shell 9-(xu)
coefficients are required. It is the purpose of this note
to describe a general method for calculating such 9-(xu)
coefficients. In special cases 9-(A ) coefficients have
been used previously by a number of authors.” '° The
notation of Ref. 5 is adhered to throughout.

2. THE Z AND 9 - (\u) COEFFICIENTS

The U and 9-(xut) coefficients are by definition a
straightforward generalization of the corresponding
coefficients for SU(2). However, the evaluation of the
9-(xu) coefficient as a sum over products of three
6-(xu) coefficients is not quite so straightforward., The
reason is the nonexistence of a symmetry relation of the
Wigner coefficients permitting the interchange of the
two (Au)’s in a product when there exists outer multipli-
city in that product.® We define the Z coefficients to be
the elements of a unitary transformation that effects the
following recoupling transformation:

Research at Brookhaven supported by the U, S, Department
of Energy under Contract No, EY-76-C-02-0016,
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The Z coefficients may be calculated in the same way
as the U coefficients,® namely as the solution of a set of
simultaneous equations obtained by fixing ¢,,A ; and
e/ at their highest weight values in the relation
2 (A iata)ersh 15 (g o desA, I ()\LL)EA>913'2

13,2
X Z((Rzuz)(hx“1)(R“)(7\3“3); (PRI P1zP12,3
()‘13“13)p13p1352)

>
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The 9-(au) coefficient may now be expressed as
) Oy (i) o
(Maly) Qi) Ouats,)  Pay

(Wisbys) Magtle) (M) iy 0
Pis [ Piz,34

= QZH; ) U((Alg“13)()\2“2)0\“)()\4“4)1 (Aouo)pls,zp(yx
"13,2"004 12,3

X{Xgy “24)Pz4p13,24)
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X Z((Ag YO0 ) g )X )y (Aol 1500, 0012, 5
XNyt )P130 5, 2)
XU 5 1) g i) (g 1)y (Mo 1 0) 012, 3005 (Nag Hiag)
X P33Pz, 51)- (3)

When pTi#*=1 and p7¥% =1 the Z coefficient reduces to
a U coefficient with the same arguments times a phase
factor (- *#1 2 etrpte2™s* 3 and we recover from
Eq. (3) the straightforward generalization of the
corresponding expression for SU(2).

3. APPLICATIONS

The 9-(1p) coefficient typically appears when the
matrix element of a coupled tensor operator acting on a
two-component system is required. In Eq. (4) the tensor
operators R +##) (1) and S *s*s? (2) operate on the first
and second parts of the system respectively. The
double- and triple-barred matrix elements are reduced
matrix elements with respect to O(3) and SU(3),

OOz :uprL || RO (1)xssHs) ()] P 0Peee |
XGOSR (W P kL")
=2k L O i Ly [ )KL a0y 1)

()‘t“t)"t H

« (/\QHZ),(}\M)pl " [R()‘rur)(l)xs(ls“s)(z)]

| (D OSHY: (3 ie% 5, (42)
<(7\1“1)(?\2M2);(KH)DI H I_R(lr“r)(]_)xs (xsus)(z)]()‘tut)pt“
x| (gD GERD: O 10"y
Oy ) gl sy
= 22000 Oy Ouiy) oy
12 -
au) Oy G op
P’ Py P
" (a) |
(4b)

(O ) TR ) |G, (Ooka) | s

X[ (gral -
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The 9-(A 1) coefficient reduces to a U coefficient if
(A, 4,)=(00) and to a Z coefficient if (1) =(00). If the
operator is a one-body operator which operates in two
shells (x,i,) and (3 4,) are of the form (r0) or (Ou) and
the Z reduces to a U. An example is Hecht’s explicit
construction of spurious states of center of mass
motion.” The 9-(A1t) coefficients also occur in the cal-
culation of multinucleon spectroscopic amplitudes from
SU(3) shell model wavefunctions.®® Here also, at least
under the assumption of cluster transfer, the Z reduces
to a U. For this case Hecht and Braunschweig express
the 9-(xu) coefficient in terms of three U coefficients in
Appendix B of their paper.? In a very similar context
9-(\uL) coefficients occur when shell model wavefunctions
are related to cluster model wavefunctions, '

4. SUMMARY

The results of Draayer and Akiyama® have been
extended to include those recoupling coefficients
required for SU(3) shell model calculations in a multi-
shell basis. The results are valid for arbitrary outer
multiplicities in the couplings involved.

Computer codes to evaluate the Z and 9-(x ) coeffi-
cients have been written. They are compatible with the
routines of Akiyama and Draayer® and are available on
request.
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Solution of the almost-Killing equation and conformal
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Four linearly independent classes of vector solutions to the generalized almost-Killing equation in the Kerr
spacetime are presented in terms of Teukolsky’s radial and angular functions. The vector solutions which
are asymptotic to the ten Minkowski-space Killing vectors are given by way of example.

. INTRODUCTION
This paper derives solutions of the vector equation
VU,V b+ V, Vg &% — ¢V, VP £, =0 (1.1)

(for constant ¢) in the Kerr spacetime, that is with the
covariant derivative V, taken in the Kerr metric. When
c=2, Eq. (1.1) reduces to Maxwell’s equations for a
source-free, test electromagnetic field in the Kerr
background; £, is the vector potential of this field. As
is well known, the equation in this case admits to a
remarkable decoupling of components and of variables
first found by Teukolsky''® and recently codified with
great clarity by Chandrasekhar.® A main result of this
paper is to show that a large class of solutions of (1.1)
for general ¢ can be expressed in terms of essentially
the same radial and angular functions that solve the
electromagnetic Teukolsky equation and the scalar
wave equation.

Equation (1. 1) is not just an ad hoc generalization of
the test Maxwell equation, but rather has definite phy-
sical interest of its own. When ¢ =0, the equation is
called the “almost-Killing equation” (AKE), and when
c =3 it is the “conformal almost-Killing equation”
(CAKE); these kinds of equations have been investigated
by York* and others as a means for generating “natural”
vector fields in an asymptotically flat spacetime, in
terms of the symmetries of the spacetime at asymp-
totically flat spatial infinity. In applying this formalism
to the specific case of the Kerr metric, as is done here,
one hopes to make progress towards elucidating the
very special “hidden symmetries” of the Kerr metric
which have been noted by so many investigators. For
example, one might hope to find a new coordinate sys-
tem, in which the hidden symmetries become more
manifest. Before proceeding, we should indicate how
the AKE and CAKE can arise in this context:

The generator of an exact isometry of course satis-
fies Killing’s equation

Va‘£6+vl3£a:0°

Since this equation has ten independent components, but
only four unknowns, it has (in a general spacetime) no
solution. In the Kerr spacetime, however, there are
two linearly independent solutions, corresponding to
the symmetries of time stationarity and axisymmetry.

(1.2)
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Most of the useful Kerr coordinate systems (e.g., the
Boyer—Lindquist5 system) adopt appropriate coordi-
nates f and ¢ such that 3/3/ and 9/9¢ are Killing vec~
tors. Since the Kerr metric is asymptotically flat,
however, there are further Killing vectors of Minkow-
ski space which are asymplotically Killing vectors of
the Kerr spacetime, in the sense that the equation

Yok, + Vy £ =0(1/42) (1.3)

holds (where v is the Boyer— Lindquist radial coordi-
nate). York’s AKE is obtained by acting on Eq. (1.2)
with an additional V¥, The resulting equation has four
components for its four unknowns, so it is in general
solvable. Any solution of Killing’s equation is also a
solution of the AKE; and, generally, any asymptotic
Killing vector is asymptotic to a solution of the AKE.
Therefore, the AKE gives a natural way of extending
symmetries (whether approximate or exact) from infi-
nity to the entire spacetime. One program for finding
“natural” Kerr coordinates might be to find four mu-
tually commuting, linearly independent almost-Killing
vectors of this sort, and then use their integral curves
as a coordinate grid.

A generalization which extends the commutator alge-
bra of the Killing vectors, is to also include “conformal
Killing vectors”’ satisfying

VBga+VaEB:égaBVY£Y’ (14)

since any Killing vector is also a solution of (1.4). The
equation derived by acting on (1, 4) with V* (which is
the CAKE) gives a priovi just as natural an extension
of symmetries from infinity. Evidently, any constant
on the right-hand side could also be viewed as not “un-
natural,” so we are led to the general equation (1. 1),
which we now proceed to solve.

Section II consists of preliminaries and the introduc-
tion of the functions in terms of which our solutions will
be expressed. In Sec. III, four linearly independent
solutions are derived. Section IV consists of a presen-
tation of those solutions to the AKE which are asymp-
totically Killing vectors of the Kerr space-time in the
sense of Eq. (1.3).

Il. FORMALISM AND TEUKOLSKY FUNCTIONS

In Boyer— Lindquist coordinates with ¢=G =1 the
Kerr metric is

ds® == (1= 2My/5) df* - (4Mar sin®6,5) dl dd
+Z/AdV + % d6% + sin®6(#2 + &® + 2Mdtr sin?6/5) dol.
(2.1)
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Here M is the mass of the black hole, aM is its angular
momentum {0 < « - M) oriented in the 6§ =0 direction.
We have also

SEr 4t costs, A=y 2My . (2.2)

The derivations will use the standard Newman—Penrose

formalism, ® with Kinnersley’s’ null tetrad. The latter

has {f, , 8, ¢ | components
P=[(*+a¥)/a,1,0,a/4a),
w=[02+ %), - 4,0,a]28, (2.3)

n* =liusing, 0,1,i/sin6)/V2 (¥ +ia cosd),

Given a vector field &, one can form a field tensor

Fuy=V,8, =V, £, (2.4)
and then project to get the components

& =F, " nt”,

Qo =5 F, 08+ m ), (2.5)

G, =F,

A. Homogeneous functions: A, 2, g, X

We suppress the spheroidal-harmonic indices » and
am which should label the separated solution, and write
Teukolsky's solutions for ®; and ®_; which satisfy
Maxwell’s equations [Eq. (1 1) with c=2]:

& = {(1NZ(6, o, 1),

®_ =ah (N2 (0,0, 0/2(r - iacost)?. 2.8

The functions Z,(8, ¢, /) and Z_4(8, ¢, {) have the follow-
ing decompositions:
Z1(8, ¢, 1) = expl= iwlexp(in$)S;(8),
2.7
Z 18, ¢, 1) — exp(- iwl) exp(ine)S_41(6). @.7
The radial functions /;; and 73 and the angular functions
Sy and S_; are governed by the equations

14 (Aﬂil—(hﬂ)> +31[K2 +2i(r ~ MK |y

A dr dr
+ (& diwr — MMy =0, (2.8
{ { 5 o
Eiln_G —(}5 (sin@(—(@ (Si1)> + (@®w? cos*0F 2aw cosh)S,,
1 (1m* + 1+ 20 cosd)S
~ s S
+ (M +2 -t + 20wn)S,y =0, (2.9

where we have defined
i 3
K=r +a)w - am.

(In Teukolsky's notation Ry =li;, R ~4h_;.) The sepa-
ration constant A, is a characteristic value of the an-
gular equation determined by the regularity conditions
on Sy and Sy at =0 and 0 —=m. It follows from these
equations that S;(6) =S (7 - 0),

One may write these equations in a more concise
form that is easier to manipulate by defining a pair of
radial and angular operators which are closely related
to the directional derivatives along the tetrad vectors:
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3 4 .
n==2 ik 0,,:8 ik

oy A PN
g |2 e sing (2.10)
"= 156 sind e :
) m .
6*_—[%+m—awmn9].

Here the notation is very similar to that used by
Chandrasekhar® and in fact the derivation will be es-
sentially by the same method he used in deriving the
vector potential solutions to the vacuum Maxwell equa-~
tions in the Kerr spacetime. If one considers the direc-
tional derivative of a quantity with / and ¢ dependence
exp(-iwt) exp(im¢), then these operators have the fol-
lowing definitions:

D=9, D'==@2z/8)v,,

T=vV2(r+iacosd)m*v,, (2.11)
Tt =V2(r-iacost)m" v, .

In terms of these operators, the equations for the radial
functions %, and the angular functions S,; or Z,,(6, ¢, {)
are

DDA + 2iwrhy = (A + 2)hy,

D) A= 2wrihy = (M +2)h,

[8(7" - coth) = 2aw cosb|Z; =- (N +2)Z,,
[8"(7 = coth) +2awcos8]Z | =— (A +2)Z ;.

(2.12)

Turn now to the scalar wave equation in the Kerr back-
ground, which Carter® first showed to be separable.
The solution can be written as

N="ho{r)Z (6, ¢, 1), (2.13)
where
Z (8, &, t) =exp(ime) exp(- rw()Sy(8). (2.14)

The radial function () and the angular function Sy(8)
are governed by the equations

1 1 Kt
(—Z(; <A§;(ho)> +<‘—A——O'(z]> ho:o’ (2. 15)
1L d (. ,d ) <z 2 2 m® )
— — |g §— + _ .
sind d0 (qm 76 Sl + \wcos™ - S, (2. 16)

+ (0} = d*w® + 2awm)S, =0,

The equations for the radial and angular functions may
also be expressed in concise form using the operators
defined previously from the tetrad directional
derivatives:

U a) + 2iwniy = ok, (2.17)
or equivalently

O aD* = 2iwrihy = obhy, (2.18)

[(7* - coth)? - 2aw cosb]Z = - 632, (2.19)
or equivalently

[(7 = cot8)® +2aw cosblZ, =~ 03Z,. (2.20)

The separation constant o% is determined by the regular-
ity conditions on Sj.
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The functions hy, .4, Z,, Z , satisfy the following lad-
der relations expressable in terms of these opera-
tors®-1!:

DD ARy =0%hy, D*D*Ahy=dih, (2.21)
B~ cotd)Z_  =diZ,, T —coth)Z,=c4Z 4. (2.22)

Functions which we will need for the AKE and CAKE
solutions are the intermediate functions obtained by
operating on %,; and Z,; only once., We define

1 1
g ==—0"dhy, gi=—0Aah,. (2.23)
g1 U1

It follows from the ladder relations, Eq. (2.21) that

D'gi=01ha, Dga=o1y, (2.24)

D*aDgy=dg, Dol g =dig,, (2.25)
and that gy satisfies the following inhomogeneous
equation,

D#ADgl +(2iwr— >\1 - Z)glz— ziwhlA/UI, (2.26)
where we have defined the constant

of =[(A +2)* = 4% + damw] /2. (2.27)

The complex conjugate equation is satisfied by g_;. One
can make the analogous definitions for the angular func-
tions and easily derive the analogous equations, viz.,

X;=- oil (8" -cotd)Z,, X, :oil (F—cot8)Z_;. (2.28)
Then from Eq. (2.22) one gets
Xi=0Z, TXy==-nZ,, (2.29)
and
(8" = cotd)aX 3 = - 03Xy, (F-cotd)dX,=-aiX 4,
(2.30)
and

X a(m - 0) =X,(6).

B. Case of zero frequency: Additional functions 7 and Q

All these new functions are a bit confusing. To see
what is going on, we can consider the limit of time-
independent solutions, where w=0, (This is physically
the most interesting case since one will generally want
time-independent almost-Killing vectors.) When w =0,
the functions Z,; are just the spin weight + 1 spherical
harmonics. They are generated from the ordinary
scalar spherical harmonics, denoted Y™ (which in the
limit that w=0, Z; becomes) by the following expres-
sions using just the operators & and #* that were defined
in Eq. (2.10) (to avoid confusion, the zero frequency
Z,y will be denoted Y[7):

Y{"=[nln+ D] 2vim, ¥R =—[nln+ 1) 200y,

(2.31)

When w=0, the constants o%, A, and ¢} are identical
and are equal to, for the (%, m) harmonic, n{n+1). The
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operator & acts as a spin weight raising operator, while
7* acts as a spin weight lowering operator, Y], Y "
also have the following relations:

[n(n+ DIVHE* - cot®) Y "=~ Y™,

[+ 1]V HE - cotd) YT =Y (2.32)
From these expressions, it becomes clear that in the
time independent case, the functions X,; are both equal
to Y;". For nonzero w, this is not the case. Similarly,
in the time dependent case Eqs. (2.25) and (2. 17) show
that both g; and ¢, are equal to ;. For w=0, the op-
erators/) and/)* act as respectively spin weight rais-
ing and lowering operators on the radial functions. For
w=20, the function %,(») is essentially a polynomial in
7.2 One fundamental solution is

hgm: (7~ 1,_)iam/5(1,_ 1,+)-iam/6
JFin+1; —n; 1+ 2iamé; (r-v_),0),

where
b=2M =AY, r,=Mz (M - )/?

and ,F; is a hypergeometric function, a polynomial in
7 of degree n since # is an integer. The other funda-
mental solution is the complex conjugate. Therefore,
h,; are essentially, for w =0, polynomials in » of de-
gree n— 1 since for w =0

R =[nln + 1)]72 <~d $ﬂ> hyn,

¥ a (2.33)

When w is not equal to zero, the function obtained when
operating on /() by /) is no longer equal to the spin-1
radial function /() as in Eq. (2. 33) for w =0, The func-
tion generated in this way will be denoted

1
=D hy(r). (2.34)
T
Likewise, we define
fa =—1/) Thy(r). (2.35)
Og

From Eq. (2.17) one can easily derive the following
ladderlike relations which f;, and %, satisfy:

DY AR =aghy = 2iwvhy/ oy,

DAfg =04hy + 2iwrhy/ oy. (2.36)

These two new functions satisfy the inhomogeneous
equations

DDAy + 2iwrfy = obfy = = 2iwhy/ o,

DD af .y =2iwrfy = gl fy =2iwhy/ o, (2.37)

The analogous angular functions can be defined from the
scalar angular function Z, when w is not zero by using
the operators 7 and #*. We define the functions @y and
@_; which in the time independent limit become ¥, and
Y1 respectively through the relations

1

1
=—7 = - . .
) 7 Zy Q. o) 'z, (2.38)

These functions satisfy inhomogeneous angular equa-
tions derived from the equations for Z,, Egs. (2.19)
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and (2.20):

[8(8* ~ cot) - 2aw cos + ab |@Q =2aw sinbZ /g,
(2.39)
[8*(7 = cotb) + 2aw cos8 + 051Q _, = 2aw sinbZ /o,.

The function Z; can be obtained from @, (or @_) by the
operation of the appropriate lowering (raising) operator
in exact analogy to the relations between the radial
functions, kg, fy,f.; in Eq. (2. 36):

(8"~ cotf)Qy = - 032 + 2aw cos8Z  /a,,

(a—COtG)Q_IZUOZO-FZaw COSGZO/O'O. (2.40)

The constants ¢4 and A, +2 differ in lowest order in w
by a term proportional to aw.'® The equations for h,

and f; are similar, the difference being the inhomogen-
eous term in the equation for f; with its explicit w de-
pendence and the substitution of o% for A; +2 in the equa-
tion for f; which also yields a difference which is to
lowest order proportional to aw. Thus to zeroth order
in w, f;, and hy are identical, they differ in terms pro-
portional to w. This difference is even present in the
Minkowski space analogs of the functions f; (=/) hy/ay)
and /; and is due to the inhomogeneous term in the equa-
tion for f; which remains even when a=M =0,

C. Inhomogeneous functions: j(r), wir), s(r), A(6,0,t),
T8, ¢,t),B16,0,t)

Below, we will find four classes of solutions to our
master almost-Killing equation (1.1). Three of these
classes are expressible solely in terms of the functions
defined so far, that is, explicitly in terms of solutions
to the scalar wave equation and Teukolsky’s equation,
For the fourth class it seems, unfortunately, necessary
to define certain additional functions, both radial and
the analogous angular ones, which are defined as solu-
tions of the inhomogeneous radial equations whose homo-
geneous solutions are the scalar wave equation radial
function %, and the analogous inhomogeneous angular
equation whose homogeneous solutions are the scalar
wave equation angular function Z,. It may be possible
that a different technique to derive the solutions will
obviate the necessity to use functions defined as solu-
tions to inhomogeneous second order differential equa-
tions which are hard to work with. It is also possible
that these new functions are expressible simply in
terms of the functions already defined. This is not
known.

The first pair of functions are the radial function
which shall be called j(#) which satisfies the inhomo-
geneous equation

O*ap + 2iwr = 6d)ilr) = Phyls). (2.41)

The analogous angular function will be denoted A(9, ¢, ¢)

and it satisfies the inhomogeneous equation
[(8* = cotf) & — 2aw cosb + A A = cos?62,,. (2. 42)

The second pair of functions are the radial function
which shall be called w(#) which satisfies the inhomo-
geneous equation

O*AD +2iwr = FYw(r) =hy(»). (2.43)

The analogous angular function, 7(8, ¢,t) is a solution
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of the equation

[(7* - cotf)& - 2aw cosé + 4| T =Z,. (2. 44)
Finally, it will be necessary to define the following

pair of radial and angular functions for the case where
w=0. The radial function will be denoted s(+) and the
angular function B(8, ¢). Their defining equations are,
respectively

O*a) - a)S=ralhg+hy) /o, (2.45)

and

[(8* = cot8)# + o3 ]B =sinb cosb(Y 4 - Y1)/ 0. (2. 46)

The three pair of functions just defined plus the func-
tions defined previously allow the specification of our
solutions to the almost-Killing equation in the Kerr
spacetime, Eq. (1.1).

I1l. SOLUTION OF THE EQUATIONS

Since the vacuum Kerr metric is Ricci-flat our equa-
tion (1,1) admits a commutation of covariant deriva-
tives which makes it equivalent to

Vg, ~ PV, & =€V, VL, (3.1
where € =¢c - 2.
Defining

Fap=Vsb, - V&, J, =€V, %, (3.2)
we can write, suggestively, (3.1) as

VEF, s =d,. {3.3)

The divergence of the left-hand side of this equation
vanishes which implies that the “source” J, is diver-
gence free. Since the “source” is actually the gradient
of the divergence of the almost-Killing vector itself,

the divergence of the almost-Killing vector is a solution
of the four~dimensional scalar wave equation, whose
solutions are functions already defined {Eq. (2.13)].
Thus, although the “source” in the above “field equa~
tion” is explicitly a functional of the solution of the
equation, it is also a known function of Boyer— Lindquist
coordinates. It is this fact which allows us to find the
solutions in terms of the Teukolsky functions. It is con-
venient in deriving what follows to express Eq. (3.3) in
terms of the operators/, /}*, &, and &, Equation (3, 3)
is equivalent to the following set of four equations:

(r=iacos®) 2D ((r —iacosd)?®y) + (2)**(r = ia coss)™

x[&* - cotb +iasinb{r - ia cosf)] &,

==J;/2, (3. 3a)
- ()5 (r = iacos®) [ B(r - iacosh)’d,)
+(22)YD%a - Aly —iacoss)t] &,
=d,/2, (3. 3b)
(r = iacos®) ) ((r - ia cosd)d ;)
+(2)* "y = iacosd) (8 (r - ia cosd) )
:J;n/z’ (3. 3C)
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AQ2S) M r —iacosd) ) ((r - iacosd)?d,) - (2)71/2
X (¥ +iacost)™ & - cotd ~ iasind(r - ia cosd) ] _,
=-dJ,/2. (3.3d)
Here we have defined the scalars J;,J,,J,, and J; by

Jy =Ty +dmy, +dsmy +Jd.m, . (3. 3e)

By analogy with the vector solutions of Maxwell’s
equation in flat-space (see, e.g., Morse and Fesh-
bach“), we can distinguish the following classes of solu-
tions for &,: '

1. If £, is divergenceless and if it is the gradient of
a scalar, &, =V,7n, then 7 satisfies the scalar wave
equation V¥ v, 1=0.

2. and 3. If &, is divergenceless, but nof the gradient
of a scalar, then the almost-Killing vector is the vec-
tor-potential solution to Maxwell’s equations in the
Lorentz gauge. Two linearly independent classes of
solutions of this type will be found below. The first one
may be thought of as generating “electric”-type fields,
the archtype being the timelike Killing vector 9/8¢f. The
second class may be thought of as generating “mag-
netic” -type fields, the archetype being the azimuthal
Killing vector 9/0¢.

4. This class contains all solutions &, with nonzero
divergence.

A. Solutions in class 1

It is most convenient to consider the projection of

&, along the tetrad legs 1,n, m, and m, and write
E = 50 + E® 4 Eom® + E . (3.4)

Since the general solution to the scalar wave equation
is given by 11=hy{»)Z,(8, ¢, ) [Eq. (2.13) above], it is
a straightforward matter to compute the gradient and
obtain the explicit components of &:

En=0Z\(D*hy) /22 = A0y Z,f.4/2%,
& ==ZyDhy=~0yZy 1,
En=—(2)20y(22,)/ (v + ia cosb)
== 0ohy@1/[(2) 2 (r + iacosb)]
Er == (2 ny(8°Z) /(7 - ia cosb)

(8.5)

=0ghoQ_1/1(2)*/ 2y — ia cosH)).

B. Solutions in class 2

We are looking for vector-potential solutions to
Maxwell’s equations, subject to the additional restric-
tion that they be divergenceless. Except for this last
restriction, we can follow exactly the method of
Chandrasekhar, which expresses the vector potential
solution in terms of derivative operators acting on
Teukolsky functions. Then, using gauge invariance, we
can add the gradient of a scalar function to make the
solution divergence free.

The solution to the vacuum Maxwell’s equations for
&, and ¢_; found by Teukolsky are given in Eq. (2.8).
Using these expressions in Maxwell’s equations, VBFaB
=0, we find that they are satisfied identically if &, is
given by
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@=(2)3"%(r - iacosd) X (vrgy ~ ARy /0y)
+X_,(rg, — Ay /0y) — iagy(cosbX 4 —sinbZ 4 /ay)

—iag_(cosf8X, +sind Z,/oy)]. (3.6)

If both &, and &_; are zero, one can still have non-
zero &,: This is the static Coulomb solution of Maxwell’s
equations, and represents the field about a Kerr black
hole when an infinitesimal amount of charge is added. 15
Examination of the vacuum Maxwell’s equations shows
that this Coulomb field is given by

d,=M/(v-iacosh)?, & =& ,=0. (3.7)

One can verify by direct substitution that the vector
potential (and almost-Killing vector) corresponding to
the solution (3.7) is just the Killing vector 9/3¢,

(%)a =(A/22)* + 3 +iasindm® /(v — iacos)

-1/2

~m®* /(r +iacosb)](2) (3.8)

For the case $;#0, we turn to the equations which
give the field quantities ¢;, &, and @, in terms of the
scalars &, &, &, and &5

&, =[3% - @V ((r +iacosh) £,)]/[(2P 2y +iacosh)],
(3.9
,==[T(EE)2Y 2+ A0 (¥ - iacosb) g/

[25(r = iacosh)], (3.10)

3)=022) D (z&) +0*(Aa) /2 + (8 = coth)
X[(r+iacosh)E,]/(2)!/?
- (8- cotd)[(r —iacosh) £5)/(2)'*
+(r+iacost)[-2¢, - AL/ +(2)*%iasinbt,,/

(r—iacos8) - 21 %asinbiz/(r +iacosd) . (3.11)

The equation for &, involves only & and £, while the
equation for ¢ involves £, and £;. Following Chandra-
sekhar, we use the relations of Egs. (2.23), (2.24),
(2.28), and (2.29) to determine the solutions &, &, £,
and &; from the equations for ®; and ¢_; and then use
the equation for ¢, to insure that the expressions for
&y &, &y and &; determined in this way are consistent.
The solution of Eq. (3.9) with &, given in Eq. (2.6)
which will give our class 2 almost-Killing vectors is

g =@M iy X4/04

g =—iacoslg_,Z,/[(v +iacosb)o,]. (3.12)
The class 2 solutions of Eq. (3.10) with &4 given in
Eq. (2.6) are

£=2)" ran_ X, /(Soy),

tr=—iacosfg,Z_ /(¥ —iacosf)a,]. (3.13)

That these £’s also satisfy Eq. (3. 11) is verified by
direct substitution. The primes in Eqs. (3.12) and

(3. 13) signify that the solutions are not yet divergence-
free. In fact, their divergence can be calculated to be

X=EVE =21 g X, - g1X 1)/ (v +iacosh). (3.14)

In the time independent case this divergence is zero.
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For nonzero w, even in the flat space analog of this
solution, this is not so. To the vector, £ one must add
the gradient of a scalar chosen to make the sum diver-
gence-free. To wit, one writes

B =+ vy, (3.15)
Equations (3. 14) and (3. 15) imply an equation for 7,
Vo V== (2)M2(g Xy — 91X 1)/ (v +iacosh). (3.186)

Remarkably, it is possible to use the ladder relations
to guess the solution of (3. 186), viz.,

N=- (2)"1/2i(2‘1X_1 —g_le)/w.

That this is correct is most easily checked by using the
scalar wave equation written in terms of the operators
[, D* & and &":

(3.17)

Vo, VEn==S)*) + 2wy + (8% - cotd) T ~ 2aw cosf)n.
(3.18)
So, the complete class 2 solution is
E,=0Qz) @1 Xy /oy - 1(2) et
X(orhoy Xoq + oy Xy + 207 + &) w = am g1 X1/ D)),
& =2 X 4 /oy + 1) 20 Vo h 1 X + o1 Xy
-2 + Aw — wn g X_y/ ok
(3.19)
£, ={-iacosbg,Z,/0; - Riw)! (01812,
- 0wWaZ 4 +20m/sind — aw sind)g_ X, |/ (+ + ia cosd),
En=l{=iacosbgiZ /oy - Riw)oeiZy - 01842 4

—2(m/sinf - aw sin®) g, X 4 [t/ (v = ic cosh).

C. Solutions of class 2 when «w =0

A note of explanation must be added concerning the
explicit factor of (w)™! in the expression for the scalar
7, Eq. (3.17). When w is zero g; and g_; are equal to
hy and X; and X_; are equal to Z;. For nonzero w, gy
and g, will be equal to 2; plus a term proportional to
w; one can write as definitions

gi=hy+wky, gy=hy+wk_. (3.20)

>

By substituting these expressions for gy and g, in Eq.
(2.26) and its complex conjugate respectively and noting
that

Dap*=D*a) + diwr,

we derive the differential equations satisfied by %, and
ko

D*AD + 2507 = M = 2y = 2idy /oy + (M + 2 = MR/ w,
(D*AD +2iwr = N =2k 4 == 2i8h /oy + (M +2 = Ak w.

(3.21)

(3.22)
Adding these two equations gives
(DAD + 2wy =X = 2)ky + Fy)
=—2iahy - hy) /oy + 200 + 2 - g/ w. (3.23)

Breuer!® showed that the eigenvalues ;A +2 and of satisfy
the relation

A+2 - @ =—2awm/d+ 0w, (3.24)
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Then the right-hand side of Eq. (3.23) may be expanded
as a power series in w. Using Egs. (2.33) and (2.27)
we get

. 8 iwmn o ifam\ h, 4amh
~oial -0 2 LY e 0
! (Or+ X"t a > o @& +0lw).

The terms in this expression zeroth order in w cancel,
allowing one to write Eq. (3.23) as

(3.25)

(DD +2iwr = A = 2){ky + k4) =0(w). (3.26)

This means that we can redefine %, and k_ by the
expression

by + k= aihy+ wk, (3.27)

where ¢; is a constant independent of w.
In exact analogy we can write as definitions

Xi=Zy+wly, Xa=Z,+wlU_ (3.28)

and show using Egs. (2.28), (2.29), (2.31), (2.27),
and (3.24), that we can redefine U, and U_; hy

Uy+Uy= o7+ wlU, (3.29)

where @, is also a constant independent of w, In terms
of these new functions we may write Eq. (3,17) as

Nz g Z ol = 120w~ i(ay + ay)(2)712)

— Wi Z 4+ Ul + 1 Uy + Ry U /2. (3.30)

When the gradient of 7 is taken the first term in Eq.
(3. 30) generates the class 1 solution, Eq. (3.5) so it
can be ignored. The relevant portion of the scalar 1
does indeed become zero when w is zero,

A final note about the solutions given by Eq. (3.19):
If the flat-space analog of these solutions are consid-
ered with w =0, then the functions /if™ and i are

hy=#", hy=nr"Hnl+1)]72, (3.31)
The class 2 solutions are
1/2, .nynm =
Nt e £ (3.32)

e+ 1) o/

which is the vector potential which generates the n-pole
static electric fields,

D. Solutions in class (3)

For a given solution to Eq., (3, 3) with J,=0 for the
field tensor F,4 a second linearly independent solution
can be generated by taking the dual of F,; In terms
of the Newman— Penrose scalars, &, ¢.;, and &,, the
dual solutions ©4, ¢¢,, &% are gotten from the originals
by multiplication by — 7, ! If we find a vector solution
to Egs. (3.9) and (3. 10) with &, ®.; given by Eq. (2.6)
and &, by Eq, (3,6), a second linearly independent solu-
tion must exist that generates the dual set, The tensor
F,g is determined by six functions: &y, $_;, &y, and
&, %, ;. The barred scalars are defined by switching
m®and m®in Eq. (2.5), not by taking the complex
conjugate of the unbarred scalars, The two procedures
are the same only for a veal F,gand £, The duals of
the barred scalars are gotten from the unbarred ones
by multiplication by +i, Suppose £ is a solution to
Eq. (1,1) from our class 2, then £® generates a set of
scalars, &, &.q,®y, Py, ®.4, and &, and - it gen-
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erates - idy, —id_y, —idy, —i®y, —iD.y, and —id,.
The linearly independent vector solution to Egs. (3.9)
and (3.10) which generates the correct dual solutions
to ®; and ®_4 given by Eq, (2.6) and &, from Eq, (3.6)
was first derived by Chandrasekhar® in the context of
solving for the vector potential solutions to the vacuum
Maxwell equations, In our notation, the class 3 solu-
tions are

£, =ah.1A(cos6X, +sinbZy/00)/[2)!/*Z0y],
£y =a(2)! ?hifcos6X_ - sinbZ_y/0,)/0y,
En=+iZilrg.— bk y/0))/[r +iacosB)oy],
En="TiZ4lrgi~ thy/0y)/[(r - iacosb)oy].

(3.33)

These also satisfy Eq. (3.11) for &;. Furthermore,
the &’s of Eq. (3.33) are alveady divergenceless, so
they are almost-Killing solutions,

In his paper, ® Chandrasekhar derives the most gen-
eral solution to our Egs, (3.9) and (3, 10) with J,=0,
His general solution is expressed as a sum of two parts,
the first being our class 3 solution of Eq, (3.33) and
the second is expressed in terms of two functions he
calls P, and P_ which are constrained by one equation,

If two solutions to Eqs, (3. 9) and (3. 10) differ by the
gradient of a scalar then Chandrasekhar’s functions P,
and P_ will be equal, For the solutions of class 2 and
class 3 this is not the case.

In the time independent case X; and X_; are equal to
the (r, m) spherical harmonic Y§™(6, ¢) and Z,; and Z_;
are equal to the (n, m) spin weight +1 and — 1 spherical
harmonics Y{" and YIf, respectively, The class 3 solu-
tion containing only the (1, 0) angular functions is the
Killing vector (3/32n)'/%(3/8¢ +2ad/3t). The Minkowski
space, time independent solutions of Eq. (3.33) con-
taining the (i, #) spherical harmonic generate the static
n-pole magnetic fields,

E. Solutions in class 4: Formulas for &, and &_ |

When the divergence of the almost-~Killing vector is
not required to be zero then this divergence must be a

solution to the scalar wave equation,
szaea:h()(r) ZU(By (-b, t)o (3-34)

Then the components of J, [the right-hand side of
Egq. 3.3)] are:

J,=eA0Zyf /28,

Jy==€0yZyfy,
Jy==e0gg@[(2)12(r +ia cos )],
T =e0ghgQ.1/[ @)1/ *(r - ia cos b)].

Teukolsky derived decoupled equations for the field
quantities &, and ®_; even in the presence of sources,
These equations are second order differential equations
for the field quantities & and &_; with source terms
denoted P; and P_;, The equation for ¢; when explicitly
written with the operators /), /)°, &, and &* is

- @EYYDH A+ 25wy + 83" - cotb) - 2aw cosb] &, = Py,
(3. 36)

(3.35)

1,2

The source term in this equation is

1521 J. Math Phys,, Vol. 19, No. 7, July 1978

Pi=- [r+iacos®)™ /) (r +iacosb) +2(r - iacosd)™J,
- @) +iacost)[d - 2iasindr - iacos6) '] J;.
(3.37)

When the expression for J, and J; from Eq, (3,35) are
substituted into Eq. (3.37), this equation reduces to

Py =¢ ()%, (h,Q +iasinbf2,)/T. {3.38)

The equation for ¢_; is simplest when expressed as
an equation for a function @ defined by the relation

& = AQ/[2(r - ia cosh)?], (3.39)
The equation for € is
- AQZY DD A= 2iwr + & (8- cotd) + 2aw cosb| 2= P_,,

(3. 40}
where P, is
P =- (r-iacos®H- 2)'/20 - iacos) [z 1oz
- 2iasinb(r - iacos®) | J, +[a@) )"
+3A023) (- iacos) ]Iz}, (3. 41)
Using Eq, (3, 35) this becomes
P =e0,a@2)V 1S = ngQ_ +iasind fLZy). (3.492)

The task now is to use the ladder relations, and the
differential equations satisfied by the functions fy, f.{,
iy and @y, @y, and Z, [Egs. (2.34)—(2.40)] to determine
the solutions to Egs, (3.36) and (3, 40). It is quite sur-
prising that the two equations turn out to have very

simple solutions! The solution of Eq. (3, 36) is
®; =05 1,Q,/[ @) %] (3.43)

as can be verified by direct substitution, Similarly,
the solution of Eq, (3,40) is

Q=0fe f.1Q-1/[(@2)! %iw]. 3. 44)

One should notice that the solutions of the homogencous
differential equations [Eq. (3.36) and (3. 40) with 7}
and T, set equal to 0]
PP =0 Zy, (3. 45)
(3, 46)

have a form remarkably similar to Eqs, (3, 43) and
(3.44). In fact the only difference is the substitutions

hy = eoi fu/ (@) w), Z, Q. 3. 47)

Qem— 1 Z 4,

F. Solutions in class 4: The limit «o =0

When w =0, f; is identically /iy, f_;is k., Q is Zy,
and @_; is Z_;, Therefore—except for the factor of
(w)'—Eqs. (3.43) and (3.44) become identical to
Eqs. (3.45) and (3.46), On the other hand, the source
terms J,, J;, J,, and J; are nonzero even when w =0,
To resolve this apparent paradox we must consider the
approach to zero frequency with somewhat greater care:
Since the zero frequency limit of f; is &, purely as a
formal definition, f; may be written as

fi=hy +wb,. (3.48)
Equation (3. 20) above defined %#_; by
ga=hytwk_y. (3.49)
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F both sides of Eq. (3.40) are acted on by the operator

0, the resulting expression is
ohy=04f1 twhk. (3. 50)

Rearranging this expression and using Eqs. (3.24) and
(2.27) we find that to order w,

by==pky/0y. (3.51)
The function by, for all values of the frequency, satis-
fies an inhomogeneous differential equation derived by
substituting Eq, (3.48) into Eq, (2.39), which is the
equation satisfied by f{, and making use of Eq, (2,12),
viz, ,

DO* Bby + 2iwrby - 03by = - 2ihe/0y + (03 - X - 2) hy/w.
(3.52)
Similarly, by making the formal definitions
fa=hytwby, @=2ZitwVy, Qu=Z, +wV,
(3.53)
differential equations for the new functions b_;, Vj,
and V_; can be derived in like manner:
(D) b= 2wy — o)y by =2ihe/ay+ (05— N = 2) hy/w,
(8(8* - cotb) - 2aw cosf +al] V,
=2aw sin8Zy/0y + (A +2- 0§) Zy/w,
[8*(7- cotd) +2aw cosb + 03] V.,

=2aw sinbZy/oy + (\ +2-0d) Z 1/ w, (3.54)

In terms of these new functions the solutions to Egs,
(3.36) and (3.40) for the functions ®; and 2 are

&1 =05 @) 2 (w) Hr Zy + w0 Z + Ry Vy) + Wby V],
Q=03 (2)1 2 Gw) [Z 0B Z TR Vo) + 0y V.
(3. 55)

Now it is apparent that the term proportional to (w)™
is, in both cases, the solution to the respective homo-
geneous differential equations and hence it may be
dropped for small w when considering the class 4 solu-
tions, The functions ®; and ®_; may then be expressed
in terms of the functions by, by, Z;, and Z_;.

G. Solutions in class 4: £'s obtained from the ®'s

In order to prove that the solutions given for &, and
®_4 are in fact consistent solutions of Eq, (3. 3) with
the specified source terms, the field function &, should
be independent of whether it is computed by quadratures
from any one of Egs, (3, 3a), (3.3b), (3.3c), or (3, 3d).
To compute ¢, from quadratures we make use of the
relationships between the functions fy, 1.4, % and
@4, @1, Z; as expressed by Egs. (2, 34)—(2.36) and
Egs, (2.38)—(2,40), respectively. That the solutions
presented for ¢, and ®_; are consistent is verified.

The function ®, has the form:

$o=00e (2wi) 1 — iacost)*{[(ogr +iwr?/ og) hy— 8F4] Z,
— iahy[(0ycos b — aw cos®8/0y) Z, + sinbQy 1},
(3. 56)
Using Eqs. (3.9), (3.10), and (3.11) we solve by
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quadratures for the scalars £, £f, &), and £%, these
solutions being

E)’,: Arf_ieUOZO/(2Eiw),
E1=7f1e00Zy/ (iw),
£ =~ iacosboeh,Qy/[(2)!*(w)(r +iacosd)],

f=-iacosboehyQ./[2)!*(w)(r - iacose)].

(3.5M)

The primes on the £’s signify that the solutions are not
yet solutions to the almost-Killing equation [Eq, (1,1)}
because we must go full circle and insure that the
divergence of the £’s is given by Eq. (3,34). The diver-
gence of the vector given by Eq, (3, 57) is

VL =3ehyZ,, (3.58)

In order to make a self-consistent solution to the al-
most- Killing equation, the gauge invariance of the
“field tensor” defined in Eq. (3. 2) must be used to add
to the vector &’ the gradient of a scalar function so that
the divergence of the sum is equal to x of Eq, (3. 34).
To this end, set

E¥=¢"+ V%, (3.59)

The Laplacian operator when acting on the scalar 7
must equal (1 - 3¢) #,Z, in order for § to be a solution
of Eq. (1.1), Thus the inhomogeneous equation for 7
is

- (07Af) +2iwr + (8" - cotf) & - 2aw cosb)n

= (1~ 3¢)hyZ,, (3. 60)
The solution to this equation is
== (1 =302 (8, 0,0+ aPhy() A6, 0, 0]  (3.61)

as can be verified by direct substitution of Eq. (3, 61)

into Eq. (3. 60) and making use of the relations of Egs,
(2,41) and (2, 42). The complete class 4 solutions are

given by

£,= AQZ) 10y Zy/ (iw)
- (1 =3w)(N*%Zy+ a0y f A)],
§= 7100 Zy/ () + (1= 36)(0j Zy + a0, f A)),
= - iacosHoyehy @/ ((w)
+ (1 - 36)(jo, @ +athyBA) /[ @) 2 (r +ia cos )],
£z =[-iacosB0phy @/ (w)
+ (1 - 3e) (- o, @y + @A)/ [ @)/ - iacosB)).
(3.62)

In order to compute the w =0 limit from the solution
in this form it is necessary again to explore the
composition of the term proportional to (w)™!, This is
done by using the functions defined in Egs, (3.20), &,4;
(3.28), U,q; (3.48), f; (38.53), /.4 and V,q, Substitution
of these functions into Eqs, (3.57), which gives the
terms proportional to (w)™, gives for the £”’s:

£l =eoy[A@2) rh X )/ ((w)
+ 25y e ar (b4 X, — ko Uy — wb (UY),

i =e0y(rhX 1)/ (w)

~teogr (b X g~ hU.4— wb,Uy),
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£l =€0y(- iacosg4Z,,/ (@) (r +iacosh)iw]
- ie0y(—ia cosB) (g Vi—kuZy— wkVy)/
x[@)!2(r +iacosh)],
th=c0y (- iacos8g,Z.,)/[ @)/ (r - iacosbiw]
~ieoy (= ta cosh) (g V.~ k12— wkyV.y)/
x[(2)!/2(r - iacos®)], (3.63)

The terms in Eq. (3.63) proportional to (w)™ that re-
main are proportional to the scalars of Eqs. (3.12) and
(3.13), the constant of proportionality being — fe0,0,/
[@)!/%w], The scalars of Eqs. (3.12) and (3. 13) were
defined in connection with the divergence-free clags 2
solution, Thus if it is necessary, these terms in Eq,
(3. 63) proportional to (w)™ can be dropped from Eq,

(3. 62) if the scalar defined in Eq. (3. 17) multiplied

by the constant — i€o,0,/[(2)}/?w] is also dropped from
Eq. (3.62) so that the divergence of what remains is
still equal to x of Eq. (3,34), For the sake of complete-
ness, we present the time independent class 4 solutions
which were derived after a lengthy calculation:

2= ARDY n(e + D) e [rh YI™ - Qiamr (b T™
= [0/ e+ 1V 2= b/l +1))] YIm)]
+nh + DIV - €))% - e)*S] ¥7"
+nl+1)a’hy[( —€) A™ ~ eB™]}
gy=[no+ 1)V Y= e[r?hy Yim = 2iamr (n T™
- [pw/ b+ D)2 = hy/ (a e + 1)) vim))
-+ DI~ ) pj - eDs] Vi
- nlr+1)a*hy[(1 - ¢) A™ ~ e B™ T},
En=n0+1)]"V2(r +iacos6)(2) Y c{a® cos?on, Yim
+2iam(ia cos O) [ [BT™/ (rtn + 1)) /2 + Y/ (a(n + 1))
- WYl = nl +1)[(1 ~€)j - es] Y
= [nte + 1)) 2@y [(1 - ¢) FA™ — cgB™},
tz=[nl+1)]1*r - iacos)(2)" /- ¢ {a® cos®6h, Y
- 2iam (acosb) [k~ T*T™/ la(n + 1))/% + Y77/ ((n +1))]
—wY+ [ -¢)j-es] YT
= [l + 1)1 %0y [ (A - ¢) 3*A™ — c8°B™]},
(3. 64)

We can characterize the solutions of class 4 by
the order of the angular function Z, with which we have
expressed the divergence x [of Eq. (3,34)] of the class
4 solutions, For the time independent solutions, the
(n=0, m=0) solution can, at least, be computed
analytically, It is

Eq0=" { (4m)t/2(3) [<V+2M+41—W2(AZ:M
2M@ME - a®)\ a3 <azsin9cost9 ?
+(W-a2>”2A> E]a_v+ > )ﬁ}
(3. 65)

V. DISCUSSION AND EXAMPLE

How do we know that we have found “all” the solutions
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of the original Eq, (1.1)? A strong indication (though
not a rigorous proof) is obtained by solving Eq. (1,1) in
flat spacetime, These flat space solutions (which are
presented in another context for the time independent
case in Morse and Feshbach!¥) can be proven to be a
complete set of vector solutions, This follows from the
properties of the spin-weight spherical harmonies. Our
Kerr solutions are in one to one correspondence with
these as can be seen by simply setting @ and M equal

to zero in our solutions,

Finally, it is interesting to work out one definite
example of the way that the AKE can be used to extend
a vector field in from infinity: We can compute those
almost- Killing vectors which are also asymptotic
Killing vectors in the sense of Eq, (1.3), (These
asymptotic Killing vectors are by no means uniquely
defined because to any asymptotic Killing vector one
can add a solution to the almost-Killing equation which
vanishes as 7 gets very large.) In Minkowski space,
there are ten independent Killing vectors, the genera-
tors of translations, of rotations and of Lorentz boosts,
In this presentation of the asymptotic Killing vector
solutions to the AKE, the axis of symmetry of the black
hole will be taken to be the z axis,

The Minkowski space translation Killing vectors and
the almost-Killing vectors which approach them
asymptotically are

2.2

8t 8’

2, (cosfA\ &  ((r—M)sind\ 3

8z’ z ér z 80’

B, (4 g1 (sinfcosea) o | hy'cosfcosg) 8
ax " \dr ° z a7 z 36

_ 1,1 gsi - M / ) _a_

kg sinfsing {[( 5 (Asin®s) P
Zai’Vh’) _8_

“\az /) e’

i(hé,1)<sin851n¢A> i+<hﬂ"lcosesin9_> 8
ar z v z 20

+Izé’1sin9cosd>{[<1 _EzMy)/(Asinz@)] 'aa—d)

<2Mar) 3
“\Naz /8y

Pl

@4.1)
where the radial function 2{! is the solution to Eq,
(2.15) with (n,m)=(1,1),
iyt = (= m* +a®) 2 cos{(a/8) In[ 0 - 7.)/(r - ,)]

- tan"[a/ ( - M)]},
6=2(M2-a®'/? ¥y ,=Mz6/2, 4.2)

The generators of the rotations in Minkowski space are
the vectors

9
L,= e
L . 2 g
x = (sing) == + (cotfcose) 35 4.3)
_ 2 3
Ly=(cos¢) 35 " {cotfsing) e
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Alternately, these Killing vectors can be used to define
the complex Killing vectors by

L,=@) "3 (Ly+iLy)
=exp@d)r/2)[{1 +cosf)m+ (1 - cosd) m|,
L= (Ly-iLy)

=exp(-id)(r/2)[(1 - cos®)m+ (1 +cosd)m], (4.4)

The solutions to the almost-Killing equation asymptoti-
cally equal to L,, L_, and L; are:

L,:<
iahg!
A

: % s
d
x ATV exp(id) sinflcosd +1)1

dr

L:- ia(2)‘3/2< gy~

. d jahl .
+ia(2)"1/? (E— nbh+ ﬂ%“*) exp(id) sinf(l - cos)n

. - d iahl!
4+ + _ 1[7}111_A yptaty _ Bt
(cos8+1)(r - iacosb) (5 dfr(ho ) A

expiop)m + (1 - cosb)(r +ia COS@)'I[VhbrI ( d Z(nh)

v
zah ) 2]

o jahd!
L:-ia@)?/? <?i; hb Y+ %L)

x A5

exp(-ip)sinf(l - cosh)1

etz A ey dah! N i
+ia(2) (d—r gy - exp(-id)sind(l +cosb)n

A

+(1+cosd)(r - iacosf)™ ['rhé'i - A ((611—7 (b
s
iahg )/ ]

+ A 2| exp

+ {1+ cosd)( +iacosd)™ [Vhé'l -A ((Zf (rbY

FERN _
~ %”-*)/2] exp(-id)m,

(-id)m

(4~ 5)
The Killing vectors are the generators of Lorentz
boosts in Minkowski space are the vectors
z90 13
Mz = T
xa la
M= ax , {4.6)
vd o
+ —
My = ot oy °

The boost Killing vectors can be expressed in a more
convenient form in order to compare with the solutions
to the almost-Killing equation which approach them for
large values of »:

M, = (r +t)cosb2-11+ (r - £) cosbn — ¢ sin8(2)"1 /2 (m +m),
M, = @)1 (M +iMy)

=(©2)%r + ) sinfexp(id) 1 + @)12(r - t) expli¢) sinbn
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D

J

M, s a@)? e [(27 + 6 (

+ @) t(1 + cos6) explig) m + (2)U(cosd - 1)
Xexp(d)m,
M_=@"1* M, -iM,)
=(2)°/2(r + ) sinfexp(-ip) 1+ @)1/ 20 = 1)
xexp(~ {¢) sinén + (2)"(cosf - 1) exp(~ id) m
+ @) 1Hcos8+1) exp(-ip)m,
@4.m

In Egs, (4.7) and (4. 4) the tetrad vectors are the
Minkowski space analogs of the tetrad given in Eq. (2,3)
obtained by setting ¢ =M =0 in Eq. (2.3). [In all other
equations in this paper the tetrad that is referred to is
that of Eq, (2.3).] The solutions to the almost Killing
equation which are asymptotically equal to M,, M,

and M are:

M;: A@Z) cosblr +t~ M@ - a¥/a]l
+cosb{r - - M@ -a%y/aln
- @)%

- @) V2 +iacos®) ¥ — m) sinb(t +iacoss) m,

~iacos®) (r = M) sinb(t - ia cost) m

@+t

1,1
1y lahg N
(b ) -

A

”;”)] sind exp(id)1

_ 1 jahb? 1+ ayhb
+(2)12 [(27— ) (é;(hgvi) =) - ( AU

- zall( - (b) + ——A-bﬂ sinfexplio)n

+1(1\1<i ) -

+ @)Y - iacost) bl - ial +cos®) hi!
+iaMb](cosf +1) exp(id) m
+ (@) +iacost) [thi ! +ialcosd - 1) kbt

+iaMb)(cosb - 1) expli¢) m,

,.2+ 2y, 14,1
M. A@)D B @7 + 1) <d1 oty + 20 > b rddhg

—iaM (— o)+ Iflj—)] sinf exp(~ig)1

i : /1,1
+ ()2 [(27- ) (i (nfr ) - =4 )

Gty hp!
Ja

+iaM ( — (b)) ~ Ab>] sinfexp(-igp)n

iacosb) [thi! - ialcosd - 1) ni!

+@)" -
—iaMbl(cosf -~ 1) exp(-ip)m

+ ()1 +iacosd) Y thb L +ialcosd +1) it

—iaMbl(cos8+ 1) exp(~i¢p)m, 4. 8)
where the radial function b () satisfies the inhomo-
geneous differential equation

d . d , d° ) arpb!
L _9) ppy= M
( S dr A 2 ) A
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Nonuniqueness in the inverse scattering problem
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The inverse scattering problem consists of determining the functional form of a scattering potential given
the scattering matrix A4 (ks, kqsy) for all scattering directions s and one or more values of the wave vector
koSo- In this paper it is shown that within the framework of the first Born approximation the inverse
scattering problem as defined above does not possess a unique solution. It is also shown that within the
framework of exact (potential) scattering theory the problem does not admit a unique solution given only
the scattering matrix for a single fixed value of the wave vector k¢s, as data. The final section in the
paper considers scaitering experiments using incident fields other than plane waves and where knowledge
of the scattered field at all points exterior to the scattering volume is available as data. It is found that,
within the framework of exact scattering theory, the data generated by any single such experiment is not
sufficient to uniquely specify the scattering potential while, within the framework of the first Born
approximation, the data generated by any finite number of such experiments is not sufficient to uniquely

specify the potential.

1. INTRODUCTION

A problem of considerable practical importance in
optics, acoustics, and quantum mechanics is that of
determining the structure of an unknown scattering
potential from scattering data. The scattering data
consists usually of either the intensity or the complex
amplitude of the scattered field in the wave zone of the
scatterer for cases when the field incident to the
scatterer is a unit amplitude plane wave having a
specified wavenumber k, and direction of propagation
8,. The intensity of the scattered field in the wave zone
is usually termed the differential cross section do/dQ
and is related to the complex amplitude of the scattered
field according to the equation

do
d? = |A(kos,koso)|2. (1)
The argument of the complex amplitude indicates its
dependence on the wavevector k2,8, of the incident plane
wave and of the direction s at which it is measured.

In this paper we shall be concerned only with cases
where the complex amplitude (or scattering matrix)
AlkS, kos,) is available as data. This quantity can be
measured directly in optical scattering experiments!=?
or it can be analytically deduced from the differential
cross section for certain classes of scattering po-
tentials.? Depending on the number of scattering ex-
periments performed A(k,s,k,S,) will be determined for
one or more values of k.8, and for some set of scatter-
ing directions s. The inverse scattering problem then
consists of using this data to determine the functional
form of the scattering potential V(r). We shall assume
throughout this paper that the scatterer is localized
within a finite scattering volume 7 and that the potential
V(r) is at least piecewise continuous in 7.

It is known® that if the scattering matrix A(k,S,k,S,)
is specified for fixed k, and all values of s, and s then
unique determination of the scattering potential is
possible. Such a determination can be performed using
an iterative algorithm presented in Ref. 5 or, in the
case of weakly scattering potentials, by means of a
procedure presented in Ref. 6 and further developed in
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Refs. 7T—9. Another case known to yield a unique solu-
tion occurs when the scattering potential V(r) is either
independent of the wavenumber %, or depends on this
quantity in a known way. In such situations a unique
solution is obtained when A(k,S , k,S,) is specified for

a fixed incident field direction of propagation s, and for
all values of the wavenumber %, and all scattering
angles s.°

It follows from symmetry that in cases where the
scattering potential is spherically symmetric the scat-
tering matrix is a function only of %, and the angle be-
tween the two unit vectors s and s,. Consequently, for
such cases the scattering matrix need be specified only
for a single arbitrary value of ks, and all scattering
directions s in order to uniquely specify the scattering
potential.!® Thus, by use of algorithms presented in
the literature®!® a spherically symmetric scattering
potential can be uniquely determined from scattering
data obtained in a single experiment.

In this paper we present the results of an investigation
into the problem of uniquely determining the structure
of nonspherically symmetric scattering potentials from
scattering data obtained in a single, or possibly finite
number of experiments. This investigation was moti-
vated primarily by statements appearing in the litera-
turel!=13 to the effect that this should be possible at
least within the framework of the Born approximation.
Ineed, an algorithm has actually been devised'?''® for
determining the functional form of a weak scattering
potential from a specification of the scattering matrix
for a single fixed value of kS, and all values of s.

In Sec. 2 we address the uniqueness question for in-
verse scattering within the first Born approximation.
The scattering data are assumed to consist of the
scattering matrix given for all scattering directions s
and for any prespecified finite set of values of k,s,. It
is shown that, with the exception of spherically sym-
metric scattering potentials, such data are nof suf-
ficient to uniquely specify the scattering potential. In-
deed, in analogy to the nonradiating distributions (see
Footnote 14) known to exist in radiation (source) pro-
blems, it is shown that an infinite number of scattering
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potentials can be determined all of which are localized
within any specified scattering volume and all of which
produce scattering matrices which, within the Born
approximation, vanish identically for all values of &
and for any finite number of specified values of &,s,. ™
Due to the linearity of the first Born approximation it
follows that any one of these potentials can be added
to any other potential without changing the scattering
data observed in any finite number of experiments,
Determination of the scattering potential from a finite
number of experiments is thus nonunique within the
first Born approximation unless auxillary informa-
tion is available to rule out the presence of such “non-
scattering” potentials within the scattering volume.

In Sec. 3 we treat the inverse scattering problem
within the framework of exact scattering theory. A
theorem is established which shows essentially that
knowledge of the field everywhere oufside a localized
scattering potential is not sufficient to uniquely specify
the field within the scattering volume. It follows that
the scattering potential can nof be uniquely specified
from scattering data obtained in any single experiment
and, in particular, from the scattering matrix given for
a single fixed value of k,8, and all scattering directions
s.

The analysis presented in Secs. 2 and 3 assumes that
only incident plane wave fields are used in a scattering
experiment and that the data obtained in any such ex~
periment is limited to the scattering matrix A(k,s, k;s,).
In Sec. 4 we examine the impact on inverse scattering
of using other types of incident waves and of allowing
more extensive field measurements to be performed.

It is shown that the nonuniqueness properties of inverse
scattering within the Born approximation determined

in Sec. 2 hold for arbitrary incident waves which are
expressable as a finite sum of plane wave fields. In
addition, the nonuniqueness result established in Sec.

3 for inverse scattering within the framework of exact
scattering theory is shown to be applicable to cases
where the incident field to the scatterer is entirely
arbitrary.

It is also shown in Sec. 4 that knowledge of the scat-
tered field in the wave zone (i.e., as k,»¥— =) is com-
pletely equivalent to knowledge of the scattered field
throughout all space exterior to the scattering volume.
It follows that for the case of incident plane waves the
scattering matrix is completely equivalent to knowledge
of the scattered field throughout all space exterior to
the scattering volume. Consequently, the nonuniqueness
properties established in Secs. 2 and 3 remain valid
even if one is allowed unlimited measurements of the
field exterior to the scattering volume.

2. INVERSE SCATTERING WITHIN THE
BORN APPROXIMATION
The scattering of a scalar wavefunction ¥(r, k,s,) by

a potential V(r) is described by the reduced wave
equation!®

(Vz + k(z))d)(ry koso) = V(r)d)(r) koso)a (2)
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The argument k.S, is included in the wavefunction ¥ to
indicate its dependence on the wave vector of the in-
cident plane wave exp(ik,s, ° r). For sufficiently weak
scattering potentials the wavefunction }) is given approx-
imately by the first Born approximation

B(r, kySy)= explik,Sye 1) — % / v V(r') expliky,se* ')
T

o explikol r — 1) 3)

lr-r'|

where 7 denotes the scattering volume which is assumed
to be finite. In the wave zone (i.e., as kv —~ <) Eq.
(3) yields the following expression for ¥:

) exp(ikor) @

d(r, kyS,) ~ explikoS, 1) = 1 Ag (RS, koS, "

4n
Here Ay (RS, kyS,) denotes the scattering matrix in the
Born approximation and is given by

Ap (k8 , kySo) = [, d°%' V(r') explikyS, * 1) exp(= ikys = 7).
(5)

The Born approximation to the scattering matrix as
given in Eq. (5) is intimately related to the threefold
Fourier transform V(k) of the scattering potential V(r):

V)= [ @ V(r) exp(-ik - ). {6)
On comparing Eq. (5) with Eq. (6) we conclude that
A (koS , koSo) = V k(s = So)], W)

which implies that the scattering matrix determines
V(k) for all those frequency vectors k given by

k="F,(s —s,). (8)

For a given scattering experiment using an incident
plane wave of fixed wave vector ks, the values of k
satisfying Eq. (8) lie on the surface defined by

kek=k=2k2(1 -8, -8). (9)

It follows that if a (theoretically infinite) number of ex-
periments were to be performed all using incident plane
waves of fixed wavenumber &, but varying directions of
propagation s, the totality of scattering data so obtained
allows (k) to be determined for all values of k lying
within a sphere of radius 2k,.° A band-limited approxi-
mation Vbl(r) to the scattering potential is then im-
mediately achievable by means of the relationship

Vult)= oy j: o 7 ()explik - 1), (10)

where the Fourier amplitude ¥(k) is that which is re-
constructed from the scattering matrix.

Because the scattering potential V(r) is assumed to
be piecewise continuous and is localized within the finite
volume 7 its Fourier transform V(k) is an entire
analytic function of the three Cartesian components
k., k,,k, of the wave vector k.!° It follows from a
theorem!7 in analytic function theory that V(k) is unique-
ly determined for all values of k by its value within
any finite volume element in k space. The extension of
V(k) from its value over a finite volume element to all
of k space can, in principle, be performed by analytic
continuation.!” Because the set of scattering experi-
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ments discussed above yields V(k) for all values of k
lying within the sphere k < 2k, the theorem alluded to
above implies that V(k) is completely determined for
all values of k by the scattering data. The complete
reconstruction of ¥(k) could, in principle, be per-
formed using analytic continuation although a much
more satisfactory (and realistic) approach would be
to use the algorithm presented in Ref. 5.

The discussion presented above indicates that the key
to unique determination of the scattering potential is to
perform a sufficient number of scattering experiments
to lead to a specification of V(k) over any finite volume
element in k space. Any single scattering experiment
leads only to a specification of V(k) over the surfuce
defined in Eq. (9). To extend this surface to a volume
requires an infinite number of experiments to be per-
formed. One such series of experiments is that dis-
cussed above where &, is held fixed and s, is varied.
Alternatively, if V(r) is independent of %, or depends on
k, in a known way then s, can be held fixed and %, varied
as was indicated in the Introduction.

If the scattering potential is spherically symmetric
then it is easily shown that ¥ is an analytic function of
the single variable k* =£% + k2 + k% . In this case Vis
completely determined by its value over any finite in-
levval of 2. According to Eq. (9) such an interval is
generated by a single scattering experiment; e.g., by
fixing k.5, and measuring the scattering matrix for all
scattering directions s. As mentioned in the Introduc-
tion there are algorithms presented in the literature®
for reconstructing spherically symmetric scattering
potentials from such scattering data.

The discussion presented above should provide ample
proof of the fact that with the exception of spherically
symmetric potentials a finite number of scattering ex-
periments simply do not generate sufficient information
to lead to a unique reconstruction of the scattering
potential. To reiterate: the entive analvtic function V)
of the three variables (kx,ley,/ez) is uniquely specified
for all values of (kx,ley,kz) if and only if il is specificd
over a finite volume element in K space. A single
scattering experiment leads to a specification of V(k)
only over the surface defined in Eq. (9) while a finite
number of experiments leads to a specification of V(k)
only over a finite number of such surfaces.

To illustrate the nonuniqueness inherent to scattering
potential reconstruction from a finite number of scat-
tering experiments we shall now show that there exist
an infinite number of (non spherically symmetric) scat-
tering potentials all localized within any specified scat-
tering volume 7 and all of which produce a scattering
matrix Ap(kyS,k,8,) which vanishes identically for all
values of s for any finite number of fixed values of
koS,. "' Any one of these potentials can be added to any
other potential V(r) without changing the scattering
matrix obtained from a finite number of scattering ex-
periments performed on V(r). Determination of V(r)
from the scattering data is thus nonunique unless
auxillary information (such as a priori knowledge of
spherical symmetry) is available to rule out the pres-
ence of such scattering potentials within the scattering
volume,
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To begin we shall construct a class of scattering po-
tentials F(r) which produce a scattering matrix which
vanishes for all values of s and a single value of ks, .
This class is then easily generalized to produce po-
tentials having scattering matrices which vanish for any
finite number of incident field wave vectors. The key
to generating the required set of scattering potentials
is to note from Eq. (7) that A, (ks, k.S,) is equal to the
transform of the potential evaluated when k=ky(s - s,).
Thus, by constructing a potential F(r) whose transform
F(k) vanishes for these values of k we have constructed
a potential which yields a scattering matrix which
vanishes for a fixed value of k.8, and all values of s.

One such class of scattering potentials is generated
by the relationship
Fk)=[k® =282 (1 - 5, 8)|X(Kk), (11)

where s is defined in Eq. (8). Here X(kK) is an entire
analytic function chosen to have a transform A(r) which
18 continuous with continuous first and second partial
derivatives and to be localized within a prescribed
scattering volume 7 but is otherwise arbifrary. Sub-
stituting for s from Eq. (8) we find that

F(k)=[k? + 2k,s, - kK| X (K), (12)

so that
oy 1 — .
F(r)= By d*k Fk) exp(ik - 1)

== [V2+2ikys, V] A(r). (13)

We can verify directly that the scattering potential
F(r) produces a scattering matrix A, (k,s, k,S,) identically
equal to zero. In particular, substituting F(r) for
V(r) in Eq. (5) we obtain

Aglkys, leyS,) = -/d%'{[vz +2ikyS, + VI (1)}

X explik,8, * r) expl=ik,s - r). (14)
We now note that

(92 + 12)[A(r) explik,s, - r)| = explikys, - T)[V? + 2ik,s, - Vi

Xx(r). (15)
Substituting from Eq. (15) into Eq. (14) we find that
Aplkys, keSy) = _fd%'{ (V2 + 22 [A(r)

T

X exp(ikys, * 1)} explikys + 1)
= _/(13,,[/\\(1.) expl+ik,s, ' )]

X (V2 + I2) exp(~ikys - T) =0, (16)

where we have made use of the assumptions that A(r)
is continuous with continuous first and second deriva-
tives and is localized within 7.

Finally, we note that the above construction technique
can be repeated using a different value of ks, (say
k'48",) and replacing A(r) by F(r) as defined in Eq. (13).
We then obtain the class of scattering potentials

F'(r)=[v2+2ik 8", » V][V + 2ikys, VN (1), am
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which yield scattering matrices which vanish for all
values of s when the wave vector of the incident field

is either kys, or k' s’,. Continuing in this fashion it is
evident that it is possible to construct a class of po-
tentials whose scattering matrices vanish for all values
of s when the wave vector of the incident field has any
one of a finite number of prespecified values.

3. INVERSE SCATTERING WITHIN THE
FRAMEWORK OF EXACT SCATTERING THEORY

The exact solution ¥(r,k,S,) to Eq. (2) satisfies the
integral equation

1
d(r, kys,) = explikyS, * T) = o=

47
X/ By’ ('Y(r’)i&'(r,,/\’gso) ﬂ)‘_(;kirﬁ,_!__‘_—ﬂ) , (18)

which can be shown to possess a unique solution  under
rather weak conditions on the scattering potential V{r).
In the inverse scattering problem we are not concerned
with solving Eq. (18) for ¢ in terms of the potential V
but, rather, are concerned with the problem of deducing
the scattering potential V(r) from knowledge of the
scattering matrix

A(kos,/eoso):/ By Ve )i, kys,) expl—ikgs-r’). (19)
T

In this section we shall show that knowledge of the scat-
tering matrix for a single fixed value of the incident
field’s wave vector &8, and all scattering directions is
not sufficient information to deduce uniquely the scat-
tering potential V(r). In order to establish this result
we require the following Lemma.

Lemma: There exist an infinite number of continuous
functions p(r) localized within any specified volume T
and such that

f g () SRR T =T

- 5 =0, (20)
A ‘r-r’'|

for all values of r lying outside the volume 7.
The above Lemma follows immediately if we choose
p(r) to be given by

p(r)= (V2 + 12) pu(r), (21)

where p(r) is a continuous function with continuous first
and second partial derivatives and is localized within

7 but is otherwise arbitrary. Making use of Eq. (21) we
find that

/ B p(r) explikolr = 1'1)
T

fr—r"!
= [or2 2 , explikalr =1'!)
[ @[+ k) ule)] x EREEITE
= @ u o) SRR < tnate),

(22)

where we made use of the assumed properties of u(r’)
and the fact that
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(724 ) ERERIT =Dy vy,

; (23)
ir~r'l

with 6(-) being the Dirac delta function.

The Lemma established above allows us to prove the
following Theorem.

Theovem: If there exist a set of functions (¢, V) which
satisfy the integral equation (18) for a fixed value of
k.S, then there exists at least one other set of functions
(4, V') which also satisfy that equation for the given
value of k,s, and which are such that:

(i) The regions of localization of both V and V' are
identical and equal to the volume 7.

(1i) Outside 7, ¥, and ¥’ are everywhere equal,

Theorem Proof: It follows from the Lemma that we
can find a set of functions (¢, p) such that

explikol r~1'1)

— 3,7 ’ —_
o) = [y ple) SHEI— <0, (24)
T
for all values of r lying outside 7. The function
#(r, ky8,) =4 (r, kySy) + (1) (25)
is thus everywhere equal to i outside 7. Moreover,
', kySy) = explik,S, » 1) + [ ' [V(r )i’ kys,)
T
explik,/r —1r'l)
+ 14
plen)] =T, (26)
S0 that there exists a V/(r) equal to
2t . i
Pr(p)= VO, koSg) + (1) VIJUr, koso) +p0) o0y

g (I‘,koSo) fl'(r’koso) +tolr)

which has the same region of localization as V (namely
7) and which together with ¢’ satisfy Eq. (18). This
completes the proof of the theorem.

The two scattered fields #(r,k,s,) and ¥’ (r,k,s,)
refered to in the above theorem are everywhere equal
outside the scattering volume 7 and consequently gen-
erate identical scattering data. It follows that the scat-
tering data (i.e., the scattering matrix) generated
from any single scattering experiment employing a unit
amplitude incident plane wave exp(ik,s,* r) is not suf-
ficient to uniquely specify the scattering potential. In-
deed, we have actually shown that a unique reconstruc-
tion is not possible even if one is given the value of the
scattered field at a/l points lying outside the scattering
volume 7. Although this later result appears to be
stronger than the former they are actually equivalent
since, as shown in the following section, the scattering
matrix uniquely specifies the scattered field at all
points lying outside the scattering volume 7.

4. INVERSE SCATTERING USING DATA OTHER
THAN THE SCATTERING MATRIX

Throughout this paper we have assumed that the
Scattering data from which the scattering potential is
to be determined consists solely of the scattering ma-
trix A(k,S,k,8,) or Ay (RS, k,S,). It is reasonable to
inquire of the possibility of uniquely specifying the
scattering potential from a single or, possibly, finite
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number of scattering experiments if more complefe
scattering data were available. The scattering matrix
is the coefficient of the spherical wave - exp(ik,»)/(477)
in the leading term of the asymptotic expansion of the
scattered field when the field incident to the scatterer

is the unit amplitude plane wave field exp{ik,s, - r). Thus,

we might expect that complete knowledge of the scat-
tered field (not just the leading term in its asymptotic
expansion) throughout all space exterior to the scatter-
ing volume 7 might provide more information than the
scattering matrix and thus might lead to a unique speci-
fication of the scattering potential. Alternatively, the
possibility exists that the use of incident fields other
than the simple plane wave might possibly generate
sufficient scattering data to yield a unique determina-
tion of the scattering potential in a single or finite
number of scattering experiments.

Consider first the possiblity of generating additional
information in a scattering experiment by (hypothetical-
ly) determining the scattered field at all points external
to the scattering volume. In both the Born approximation
and the exact theory the scattered field is given by an
expression of the general form [cf., Eqs. (3) and (18)]

exp(ikol T —1'1)
lr—r'|
(28)

>

d(r, ky8s,) = explik,s, * r)—l/d%f's(r)

where S(r’) is a “source function” equal to the product
of the scattering potential V(r ) with the field  or, in
the case of the Born approximation, the incident field
exp(ik,8,° r). The second term on the right-hand side
of Eq. (28) is easily shown to be the solution to the
inhomogeneous Helmholtz equation

(VE+ 2 $(r) =S{r), (29)

which satisfies Sommerfeld’s radiation condition (i.e.,
behaves as an outgoing wave at infinity). It follows from
a theorem!® pertaining to such wave fields that ¢(r)

is specified uniquely at all points exteriov to the vol-
ume in which S(r) is localized (i.e., outside 1) by the
leading term in ifs asymptotic expansion. Since the
leading term in the asymptotic expansion of ¢ is simply
the product of the scattering matrix with the spherical
wave — exp(ik,»)/ (47¥) it follows that ¢(r) and, hence,
¥(r, kyS,) is uniquely determined for all values of r
lying outside 7 by the scattering matrix.

We conclude from the discussion presented above
that for the case of an incident plane wave exp(ik,s,* T}
complete knowledge of the scattered field throughout
all space exterior to the scattering volume 7 is com-
pletely equivalent to knowledge of the scattering
matrix A(k,s, k,8,) evaluated at that particular value
of k.8, equal to the wave vector of the incident plane
wave. This result is true both within the framework
of the Born approximation and in exact scattering
theory. In conjunction with the results presented in
Sec. 2 it leads to the assertion that: within the frame-
work of the Born approximation it is impossible to
uniquely deduce the structuve of a scatteving potential
from measuvements of the field external to the scattey-
ing volume in any finite number of scatteving experi-
ments using incident plane waves. The results present-
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ed in Sec, 3 show that the same assertion holds true
within the framework of exact scattering theory if we
allow only a single scattering experiment,

Congider now the use of incident fields other than
plane waves in a scattering experiment. Denoting such
an incident field by £(r, ;) we find that the scattered
field y(r, k,) satisfies the integral equation

fcfsy VI')Z,[J ’ k)eXp(lko“‘Tr'”,

(30)

¥(r, ky) =

which, within the Born approximation, yields the follow-
ing expression for :

; r
Hr k) = E(r, k) = 41—/ P VENE, ) SRR T 2 T7])
s fr—r1'|
, (31)
A perusal of the theorem established in the previous
section reveals that its proof does not depend on the
nature of the incident wavefield to the scattering po-
tential. Consequently, the theorem applies equally
well to the integral equation (30) for arbitrary fixed
incident fields &(r, k,). It follows that within the frame-
work of exact scatteving theory il is impossible to
uniquely deduce the stvucture of a potential from mea-
surements of the field extevnal to the scattering vol-
ume tn any single scatteving expeviment.

The situation is actually more complicated within the
approximate scattering model provided by the Born
approximation. Without loss of generality we can as-
sume the scattering data consists of the leading term
in the asymptotic expansion of i which is easily shown
to be

exp(zkor)

ZZ)(I', k0)~g(r3 k{))- f(k } (32)
Here
F(kS) = / &' V' VE( ko) exp(—ikos - 1), (33)

is the generalization of the scattering matrix
Aglk,, kS, to incident wavefields other than plane
waves.

We shall consider only the case when the incident
field is expressable as a sum of a finite number of
plane waves exp(ik,s, * r) having identical wavenumbers
%, but different directions of propagation s,'%; i.e.,

£(r, ko) = 2 alkys,) explikys, ° T). (34)
0
Substituting Eq. (34) into Eq. (33) yields

FkeS) =22 alkys,) / @ V(r') explik,S, * ') exp(~ iky8 - T7)
=21 alkySy)Ag (kS RoS,), (35)

where we have used the definition of the scattering ma-
trix within the Born approximation given in Eq. (5).

The results presented in Sec. 2 showed that it is
always possible to find a scattering potential V(r)
which produces a scattering matrix A, (k;s, k,S,) which
vanishes identically for all values of s and any finite
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number of fixed values of k;s,. Since the sum in Eq.
(35) is over a finite number of terms we can replace
Ap (RS, k,S,) in this equation with the sum A, + A, with-
out changing (the observable) f(k,s}; i.e.,

Fkes)= E alkoSo)Ag (koS , koSo) + A (koS , koS,)]

=2 a(koso)/ & [V(r') + V(r')]exp(ikys, * ')

Xexp(~—ik,s 1)

:fd3r’[17(r’)+7(r’)]g(r’,ko) exp(—iks-r’). (36)

It follows immediately from Eq. (36) that it is not pos-
sible to uniquely specify the scattering potential from
f{k,s} and, hence, from a finite number of scattering
experiments using incident fields representable in the
form given in Eq. (34).
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manifold
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It is shown that a form of the Cauchy-Lagrange formula for the evolution of vorticity in a barotropic
flow generalizes to the case of ideal fluid motion on higher-dimensional Riemannian or semi-Riemannian

manifolds.

1. INTRODUCTION

An important theorem concerning the motion of an
ideal fluid is the Cauchy—Lagrange formula, valid for
barotropic flow (see Sec. 2), which expresses the vector
w,/pt as a linear function of wo/po. Here w,, the vorti-
city at time /, is defined as curl v, where v, is the
velocity field at time ¢; p, is the density (mass per unit
volume) at time ¢, not assumed constant. The precise
formula is

Wt

w
sk = F..[=
F, 0 t*( p0>

) (1)
Py

x

where the matrix F, is the Jacobian matrix of the
diffeomorphism F, representing the fluid motion;

F (x)=position at time ¢ of the particle which was at x
at time 0.! Cauchy proved this formula in 1815, See
Refs. 2—4. A consequence of (1) is that if the vorticity
is zero at a point x at time 0, it remains zero at all
points F,{x) visited by the particle that was at x. (In
particular, if the vorticity is zero everywhere at /=0,
it remains zero everywhere, and hence locally v=V¢
for some potential ¢. So potential flow persists for

all time, )

Our object is to generalize the Cauchy—Lagrange
formula to the case of ideal (compressible or
incompressible) fluid motion in an #-dimensional
semi-Riemannian manifold., Actually this relation
cannot be directly generalized; one proves a covariant
form, in which the vorticity is a 2-form rather than a
vector field. For the incompressible case, a reference
for this is Marsden.® Our method, however, is to view
the problem in space—time, which both simplifies the
calculations, and allows a simulfaneous treatment of
relativistic motion. We analyze in detail the isometric
motion of a relativistic fluid. This has been discussed
by Mason,® Ciubotariu,” and Trautman;® the present
analysis is much simpler.

2. IDEAL FLUID FLOW IN R®

For the purposes of comparison, we briefly derive
the classical results. There are two equations, express-
ing conservation of momentum and of mass. [In general
a subscript ¢ indicates evaluation of a quantity at time
¢, but only when we wish to emphasize the evaluation.
Thus, for example, v=v{v,)=v,.]
ov

—""(V‘V)V:"'lvp,

il
5 5 ——p—+V~(pv):0. (2)

at

Here p is the pressure field. A barotropic fluid motion
is one in which p and p are functionally related, This
may be either a physical property of the fluid or else
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a peculiarity of the particular motion under study.
We define an operator

2
U=—+g-V 3
TSRS (3)
By curling (2) and using some vector identities involving
curl and divergence, one finds

w
l:u,-b— V]_O, (4)

where the square bracket stands for the commutator
{Lie bracket) of these differential operators. Thus in
space—time M =R3*XRR the flows generated by these two
vector-fields commute. The flows are, respectively,

flow of u: G, (x,s)=(F, F'x),s +1¢),

. (5)
flow of > Vi H,{x,s)=(y(1),s),

where y(#) is the position {-nnits along the integral curve
of w/p frozen al lime s:
dy  wl@),s)

ar (), sy
The “quadrilateral” in Fig. 1 commutes because of
(4), as does therefore the projection of this figure
onto R®. We thus have the picture in Fig, 2 from which
we can draw two conclusions:

y(0)=x,

Pyoposition 1: (1) Frozen w/p lines are material
lines, that is, they move with the fluid. (2) Frozen
w/p-lines permute the particle paths. I. e., if each
point of a given particle path is transported by the w/p-
line frozen at the local time, the resulting curve is also
a particle path.

Remark: Part (2) seems to be a new observation.

Covrollary: If the vorticity is zero at a point x, it is
zero at all points along the furture trajectory beginn-
ing at x.

GSO Ht( x,0)
GS (x,0)
FIG, 1.
H, (x,0)
(x,0)
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Pyoof: By hypothesis, A=B in Fig. 1, But two
distinct particle paths cannot originate from the same

point, Thus C =D, which means w =0 at time s on that
particle path,

Equivalent consequences of (4) are the relations®

w W

=.v =G —~.V , (6)
P Gy lxss) (xys) P (x,8)
“[Ht(x,s):Ht*|(x,s)”‘(x.s)' (7)

Since w/p -V has no time-term, (6) reduces to the
Cauchy formula (1), The formula (7) does not seem to
be of any particular use.

3. A LEMMA ABOUT LIE DERIVATIVES

Let M be a semi-Riemannian manifold with (indefinite)
metric tensor g. Thus g is a second rank covariant
tensor defining a nondegenerate bilinear pairing of each
tangent space. We give M the unique torsion-free metric
connnection determined by g and denote the associated
covariant differentiation operator by V. If v is a vector
field on M, then L  denotes the Lie differentiation with
respect to v and V is covariant differentiation with
respect to v. Following Kobayashi and Nomizu,® we
define the operator A =L -V, for v a vector field on
M., All functions and tensor fields are assumed smooth
unless otherwise specified. For economy of termino-
logy we define a tensor devivation to be any derivation
of the algebra of tensor fields which commutes with all
contractions. The tensor derivations themselves form
a Lie algebra.® As L, and V, are tensor derivations and
L f=V, f for any function f we conclude:

(a) for any vector field v, the operator A, is a tensor
derivation vanishing on functions.

Moreover, as our connection is torsion-free (e, v]
=V,v-Vu), we have

{b) if # and v are vector fields, then A p =~ u.
Combining (a) and (b) gives

(¢) if # and v are vector fields and a is a 1-form, then
(A, v)={»,V ), where { ,) denotes the pairing of
1-forms and vector fields. If v is any vector field, we
denote by v* the dual 1-form given by {v*,w) =g ,w)
for each vector field .

We now observe that if u,v,w are all vector fields,
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then by (c)
(Ap*,uw)=g0,v ),
and hence as Vg=0,
(g, 0)],0) = 9, Lelu, )] = g(V 10, 0) + g, V,0)
=(Ap*,w) +{Au* w},
and thus
dlgle,v)]=Ap* + A u*,

Taking # =v and applying the definition 4, =L, -V,
we find!%:

Lemma: For any vector field «,
L, *) = Var* +3d[glu,u)].

[Notice that V_ (v*)=(V_2)* as Vg=0, so that the notation
V,u* is unambiguous, ]

Remark: Each mixed second rank tensor field s can
be thought of as an endomorphism of the tangent bundle
of M and defines a unique tensor derivation vanishing
on functions which we can denote by D[s]. With this
notation we can view. (b) as stating that for each vector
field u,

A,=-D[Vu].
A similar computation shows that if f is a function, then
L,, ~-fL,==Dldfz u]. (8)

The lemma, even though merely a fact about vector
fields, can be given a physical interpretation. We think
of u as being the velocity field of some “generalized”
fluid motion on M, so a=V u is the acceleration and
E =3g(u,u) is half the “square of speed.” With this nota-
tion we can write the lemma as

L (w*)=a*+dE.
For any vector field v, we define €, =dv* as the
generalized vorticity of v. As exterior and Lie differen-

tiation operators commute, and d>=0, and we have the
following fact

Corollary: L (Q,)=Q,.
Thus the voricity change along flow lines is directly
related to vorticity of acceleration.

4. NONRELATIVISTIC FLOW OF IDEAL MOTION
IN A RIEMANNIAN MANIFOLD

Let S be a Riemannian manifold. For a discussion of
the correct formulation of the Euler equations, we
refer the reader to Serrin.? (The problem is that the
integral conservation laws leading to the Euler equa-
tions cannot be expressed intrinsically.) See also
Dunic, Ebin-Marsden,'® Marsden,*® and Szeptycki, '
where existence and uniqueness questions are treated.

We accept as a hypothesis that the correct generalization
of the Euler equations is

1
Vuv = — E Vp (9)
on the space—time manifold M =SXIR. Here v is the
(time-dependent) Eulerian velocity field on S, inter-
preted as a vector field on M; u=23/3(+v [see (3)],
another field on M; and p and p are functions on M,
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The metric tensor of M is g =metric tensor of
S di*d{. Actually, the dual form of (9) is more
convenient,

Vo= —dp/p. (10)

Note that V, (v*)=7V (u*), since V (dt)=0. Thus if the
flow is barotropic, which we assume, the Euler
equation reduces to the statement

v, (i*) is exacl.
The corollary then implies that L (di*)=0.

Pyoposition 2: (Covariant form of the Cauchy—
Lagrange formula,) Let v be a time-dependent vector
field on a Riemannian manifold S, satisfying the Euler
equation, Suppose pressure and density to be function-
ally related. Let {F,:/c R} be the family of diffeo-
morphisms of S generated by #, and define the vorticity
be to the 2-form w,=dv¥. Then

Frw,)=uw,.
Proof: Define u,: S~ M by u,(x)=(x,#), and note
uFGrty=v%.

Let the flow {G,} be defined in terms of the family {F,}
exactly as in (5), and note that

u is the infinitesimal generator of {G,}. (11)
Also it is clear that i o F =G, °u,. Finally,
Fi (@)= Ff(dv})
= Ffd(pfu*)
= Ff uydu*
=(l,° Ft)* du*
=(G, = uy* du*
= W GE(du*)
= pXdu* by (10) and (11)
=}
=w,.
Remark: For the incompressible case, see Ref. 5,
p. 86.
?:.LISIODMETRIC MOTION OF A RELATIVISTIC

In this section we assume that « is the generalization
of the four-velccity field of a relativistic fluid, so we
suppose that

glu,u)=1, (12)

First let £ =fu where f is a function. By (12), glu,u) is
constant so that g(,V 1) =0, and we see velocity is
perpendicular to acceleration., Thus on taking the inner
product of » with V £ =(V flu+7V,u, we find

gV, 1)=V 1. (13)

On the other hand, applying the lemma of Sec., 3 to §
land using g(&,£) =] gives

L&) =AY, u* + 2V u* + fdf. (14)
With these facts in mind, we can give an easy proof

of the conservation of vorticity for isometric motion,
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We first recall some basic facts. A vector field % is
called a Killing vector field provided L,(g)=0. As

Vg =0 we note that L,(g) =0 is equivalent to 4, ¢=0.
A simple calculation shows that for any vector field v
we have L ¢=Sym(Ve*), where Sym denotes the
symmetrizing operator. Consequently

% is a Killing vector field

<= Sym(VE*) =0

<=> for every vector field w, g(V_k,w)=0. (15)

A relativistic {luid motion is called isowmietric if there
is a nonvanishing Killing vector field parallel to 4-
velocity. We thus assume that £ is a Killing vector
field, Combining (13) and (15) gives

v, f=0. (16)

Now for any vector field v, v* is a contraction on
g%v, hence as L, is a tensor derivation, L,(v*)
=L,)* and therefore the left side of (14) vanishes.
Thus in view of (16), (14) reduces to ﬁVuzc* = —fdf so
that if ¢ is nowhere vanishing (as we can assume, then
f is everywhere positive without loss of generality)

we can write

v ¥ =—d{ogf). amn

But this means the lemma of Sec, 3 (and corollary)
applies to say

L (Q)=0

u u ’

(18)

where as before, £, =du* is the generalized vorticity.
Physically, (18) states that vorticity is conserved in
isometric motion, Of course the lemma says (18) would
hold whenever acceleration is potential, but this is
really no more general, becuase in this latter case we
arrive immediately at (17) and then work our way back®
to L,g=0. Thus the condition of isometric motion is
equivalent to the condition of accelevation being a
potential, According to the corollary to the lemma of
Sec. 3 and the Poincaré lemma for differential forms,
vorticity can be conserved only when the motion is at
least locally isometric. From (8) we have L,u= - (9, fl,
which vanishes by (16), so that both # and g belong to
KerL,. As L, is a tensor derivation commuting with d;
it follows that any tensor constructed out of # and g

via operations of ®, +, scalar (constant) multiplication,
d, contraction, Hodge star, will again belong to

KerL,. Such tensors include the physical tensors of
interest in the case where dimM =4 and g has signature
(+ = = =), In particular, the comoving vorticity 2-form
w, the expansion, and the comoving vorticity vector all
belong to KerL, by our preceding remarks, and we
therefore obtain as special case the results of Mason®
and Ciubotariu.” However, as (8) makes quite clear,
KerL, and KerL, are two different things: “shearing”
due to 1/f can prevent some of these tensors from being
conserved in an isometric motion,

A more general condition than the condition of
isometric motion is the condition of Born rigidity. As
(12) holds, the tensor

N
Pu—g U KU

defines (in mixed form) a field of projection operators
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onto the orthogonal complement of # in 7M, the tangent
bundle of M. The motion is said to be Born rigid if
L,(P,)=0. With h=1/f, a simple calculation shows

L,(g)=hL,(g) +2Sym(£* ® dn). (19)

Hence if £ is a nonvanishing Killing vector field, then as
L,g=0,
L (g)=2Sym(t*®dh)

cwamlre(-4)

=2Sym[u*® Y u*],
where in the last step (17) has been applied. But by the
lemma of Sec. 3 and (12), we have V u* =L u*, hence
L (g)=L (u*®u*) and therefore L (P,) =0, which means
the motion is Born rigid. As examples exist of non-
isometric Born rigid motions, and in view of our
preceding remarks (the corollary to the lemma) we
conclude that, in general, vorticity is not conserved
in Born rigid motion,
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YF,} is not a flow: F, #F,o F,, because the velocity field
is time dependent.
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In the past few years there has been a growing interest in cosmological models which are not spatially
homogeneous. The assumption of spatial homogeneity simplifies the Einstein equations to ordinary
differential equations. If the assumption of spatial homogeneity is relaxed, some other symmetries are
needed to make the Einstein equations mathematically tractable. The recently discovered solutions of
Szekeres have been found to possess an interesting type of symmetry: The three spaces orthogonal to the
fluid flow are conformally flat. Herein, we prove a theorem restricting the possible inhomogeneous
cosmologies with conformally flat 3-surfaces. We determine which spatially homogeneous models admit
conformally flat 3-surfaces. This information, although interesting in its own right, will serve as a guide
in determining those spatially homogeneous models that may be generalized by retaining spatial conformal

flatness but relaxing the condition of spatial homogeneity.

. INTRODUCTION

Spatially homogeneous cosmological solutions to the
Einstein equations have been extensively studied in the
past fifteen years, the work being facilitated by
Bianchi’s original classification scheme for Lie groups
and its various modifications.! This scheme has enabled
researchers to study the dynamics of restricted classes
of models individually. Lately, interest has turned to
inhomogeneous models, where the same powerful group
theoretic techniques are no longer applicable.

Szekeres? has recently found a family of exact solu-
tions to the Einstein equations with a pressure-free
matter source (“dust”), some of whose members may
be interpreted as inhomogeneous cosmological models. *
This family was later generalized by Szafron and Wain-
wright®® to include perfect-fluid sources. We will
henceforth refer to all these solutions, for p=0 or
p#0, as the “Szekeres solutions.”

The Szekeres solutions have conformally flat, co-
moving, spacelike hypersurfaces.’ These models
suggest that the assumption of conformally flat space
sections (“spatial conformal flatness”) may provide
the symmetries necessary to solve the Einstein equa-
tions when the condition of spatial homogeneity is
relaxed.

Herein, we explore some of the restrictions imposed
by spatial conformal flatness, In Sec., 2 we study that
subclass of the Szekeres solutions which obey the
barotropic equation of state p=p(u), where i is the
relativistic energy density and p is the pressure of the
perfect fluid, In Sec, 3 we determine which spatially
homogeneous models admit conformally flat slices. In
this way all possible limiting cases of inhomogeneous

Awork supported by an N. M. U. Faculty Research Grant.

¥ permanent address.

Swork supported by a postgraduate scholarship from the
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cosmologies with conformally flat slices are exhibited.
This should facilitate future attempts at generalizing
the Szekeres solutions. Section 4 contains our
conclusions.

Throughout, we use the orthonormal tetrad technique,
as elucidated by MacCallum, ® Qur notation also follows
that of MacCallum, and is, briefly:

Space—~time metric signature: +2.
Orthonormal tetrad: {e,}, a=0to 3.

Tetrad components are denoted by letters at the be-
ginning of the Latin and Greek alphabets, coordinate
components by letters near the end of the alphabets.
Latin letters range from 0 to 3, while Greek letters
range from 1 to 3.

Partial derivatives with respect to coordinates:
AB/ax = B,

Derivatives along tetrad vectors: e,°9=0,.
1. THE SZEKERES SPACE-TIMES

The Szekeres space—times are solutions to the
Einstein equations,

Rgb - Q(Q"&bR = (,LL +/)) U gty +pgab9 (2' 1)
for the metrics of the form!
dst =~ df* + % axt + &*B(ayt + d2b) (2.2)
with the fluid flow vector
2]
u=— {2.3)

(s
T~
.

(Note that the metric sighature and notation used here
differs from that of Szekeres? and Szafron.?) They
divide naturally into two classes.? (In fact, thisis a
coordinate-independent division, )

Class 1. B,#0 (2.4)

and A and B have the form
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A =1n[n(e/n).], (2.5)
B=1n{o/n], {2.6)
where
n=nlx,v,2), ¢=0¢,x). 2.7
Class II. B,=0 {2.8)
A =1n[x + &}, (2.9)
B=1n[o/n], (2.10)
where
A=A, %), p=0) (2.11)
n=121+k(y¥+2Y], k=zlor 0, {2.12)
t={a@) (v + 2+ By +¥(x) 2 + 8(x)]n. (2.13)

The functions &, #, v, and 6 are arbitrary. Szafron®
gives an algorithm for determining ¢ in Class I, and ¢
and X in Class II once the pressure p is prescribed as
a function of time; however, we shall not need more in-
formation than is given here.

The Szekeres space~times contain a perfect fluid
whose flow is irrotational, geodesic, and normatl to the
hypersurfaces {f=constant}. Moreover, the flow’s ex-
pansion tensor, €,z has two equal eigenvalues:

8, = (2.14)

as does the 3-Ricci tensor of the spacelike hyper-
surfaces. The co-moving, spacelike hypersurfaces
{t= constant} are conformally flat, as was shown by
Berger et al.® for the Class I Szekeres solutions, and
by Wainwright and Szafron (private communication)
for all the Szekeres solutions. In fact, as Collins and
Szafron' have shown, one may characterize the gen-
eralized Szekeres solutions by the above properties.
We state this as a theorem, whose proof may be found
in Collins and Szafron':

Theorem 2.1: A space—time that contains a perfect
fluid and satisfies:

(i) the fluid flow is geodesic and hypersurface-
orthogonal (1=0=w);

(ii) the hypersurfaces to which the fluid flow is nor-
mal are conformally flat;

(iii) both the Ricci 3-tensor of the hypersurfaces and
the fluid’s expansion tensor have two equal eigenvalues,

is a solution to the Einstein equations if and only if it
has the Szekeres line element,

The matter content of these space~times obeys an
equation of state that is, in general, an unusual one; al-
though the energy density may exhibit spatial variations,
the pressure may not [p =p(f) always]. In what follows
we restrict our attention to that subclass of solutions
satisfying a barotropic equation of state:

p=pu). (2.15)

Within this subclass, both ¢ and p will be functions of
time alone, The natural question which arises is: Do
any spatially-inhomogeneous space—times belong to
this subclass? [Wainright® has shown that all Szekeres
solutions with p =p(p) are locally rotationally sym-
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metric (for definition see Ref. 10), ] In fact, there are
none, as we demonstrate below.

Lemma 2.2: In those Szekeres space—times with
p=p{t), both 8,, and R%,; are functions of time alcne,
[Note that in the Szekeres space—times p=p(f). The
assumption p=p(u), dp/di +0 is a subcase of 4 = (1), ]

Proof: We have

dup=0=040. (2. 16)
Equation (A13) then implies
8a91=—28a92. (2. 17)

Taking 3, of (A7) and using (2. 17) and the commutation
relations (A2) gives

(65~ 8,) 3,6, =0; (2.18)
whence we have
9o0y=03,6y =0, (2. 19)

whether 6, =0, or not. The equations obtained by taking
3, of (A11) together with (2, 19) give

aaRikl = auR{Z = 0, (2. 20)
thus completing the proof.

Theorem 2.3: Any Szekeres solution with p =pu (/) is
spatially homogeneous and is either: Robertson—
Walker, of the Kantowski~Sachs type (see Sec. 3), or
admits a group of Bianchi—~Behr types I or VI_,.

(2.21)

We consider the two classes of Szekeres metrics
separately:

Proof: By the lemma: 2,0,=0.

Class I: 6,({)=B,=¢,/¢, (2.22)
implying that ¢ has the form
¢ (t,x) =Ex) expl [*0,at]. (2.23)
But then
93(f)=At=l]5t/¢7:91, (2-24)

so the expansion is isotropic, i.e., shear-free. Any
perfeci-fluid space~time in which the flow is geodesic,
irrotational, and shear-free is necessarily Robertson—
Walker,'* (p, 135); thus the theorem is proven for
Class I,

Class I1: These are characterized by B,=0, so a;=0.
With (2.21), Egs. (A9) and (A10) reduce to
(65 - 04) (@y —n3) =0 (2. 25)

and
{8y — 8y){as + nyp) =0, (2. 26)

If 6, =6, these space—~times must be Robertson—Walker
by the previous argument; so assume 6{# 8,. Then

O=ay-ny=-A,e” 2.27)
D=a;+nyy=-A,e?, (2.28)
implying that £ =0 in (2. 13). Therefore,
B3(1) =A, =N/ (2.29)
so we must have
A. Spero and D.A. Szafron 1537



X1, x) = F(x) expl [ 05at], (2.30)
where F(x) is arbitrary, The metric now becomes
¢
ds®=—di* + exp [2 f 93dt] Fi(x)dx®
¢ (t) 2, 42
+ dv: +dz°). 2.31
o, 2) {d- z%) {2.31)

By suitably redefining the x coordinate we may set
F(x)=1. This metric is spatially homogeneous and has
the Killing vectors:

i, a2 2o,
g =[skr(z* =) + 1] 2z TRz oo (2. 32)
BTSN PPN S 2
£, =Fkyz az+2[k(y -z +1] 7 (2. 33)
ad il
S*y-a_z_zay: (2-34)
0
§i=75- (2. 35)
We need only determine the possible Lie algebras.
The commutators of the Killing vectors are:
[El, E2]=k€3’ (2. 36)
[EZ: ES]:EIy (2. 37)
(&5, E1]=E2, (2. 38)
(&, &1=0 (=1,2,3). (2.39)

The following cases obtain:

(i) k=0, &, &, and &, form a simply-transitive
group of Bianchi~Behr type I;

(i1) k=+1, &;, and £, form a multiply-transitive
group with no simply-transitive subgroups. This is the
Kantowski—Sachs case, %12

(iii) k= -1, £ +E&;, £, and &, form a simply-transi-
tive group of Bianchi—Behr type VI_,. [Nofe: We find
that the Kantowski—~Sachs metrics can arise only when
k=-+1, Szekeres® has stated that the k=x1 cases gen-
eralize those solutions given in Kantowski and Sachs. 13
In fact the £ =- 1 solutions are only the Bianchi~Behr
type VI solutions found by Kantowski and Sachs (see
Ref. 12).] This completes the proof. In special cases
other groups may be admitted as well as the ones in-
dicated. For example, a space—time may admit a
Bianchi—Behr type VII, group in addition to its Bianchi~
Behr type I group.

By combining the preceding two theorems, we obtain
a theorem similar to that of Berger ef al.® concerning
the nature of possible inhomogeneous exact solutions to
the Einstein equations with perfect fluid sources.

Theovem 2, 4: Given Einstein’s eguations with a zero
cosmological constant, a perfect fluid source, and:

(i) irrotational, geodesic flow whose expansion tensor
has two equal eigenvalues;

{ii) conformally flat, comoving space slices, whose
Ricci 3-tensor has two equal eigenvalues;

(iii) the equation of state p =p(t);
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the only solutions are spatially homogeneous ones that
are either: Robertson—Walker, Kanotwski—Sachs, or
admit a Bianchi—Behr type I or VI_; group. Berger ef
al.% replace (i) with irrotational flow and spherical
symmetry about a regular spatial origin; require flat
comoving sections rather than (ii); and assume p = p{p)
with a nonzero speed of sound. With their assumptions,
only the Robertson—Walker solutions arise.

Theorems of this type are special cases of the more
general conjecture: hypersurface orthogonal space—
times (w=0) with geodesic flow (W=0) and p = p(t),
p=plt) are spatially homogeneous. We know of no
counterexamples to this conjecture, however we know
of no proof either.

111. CONFORMALLY-FLAT SPATIALLY-HOMOGENEOUS
SPACE-TIMES

We shall consider space—times satisfying the two
conditions:

(A) There exists a group of isometries G, whose
orbits in some open set of the space~time are space-
like hypersurfaces with either

(i) a subgroup G; of G,, which acts simply transitive-
ly, or

{ii) no such subgroup G;, and

(B) The surfaces of homogeneity are conformally flat.

If 7> 3, it can be shown'! that =4 or »=6, Those
space—times with » =6 are the Robertson—Walker
models (see Ref, 12), therefore they satisfy (Ai).
Space—times satisfying (Aii) have =4 and a subgroup
G; whose orbits are two~dimensional and of constant
positive curvature (see Refs. 12 or 15). We will refer
to these space—times as Kantowski—Sachs since
Kantowski and Sachs® have studied solutions to the
Einstein field equations with dust matter content ad-
mitting such a group,

Let us first consider space—times satisfying (Ai).
We choose an orthonormal tetrad {ea} so that e is
orthogonal to the hypersurfaces and

o s = diaglng, g, n3), @ =1{a,0,0), an; =0, (3. 1)

where #%® and @ are given in terms of the rotation
coefficients ', . =e,°V,@, by
nocB: ér(aw Eﬁ)vc, (3. 2)

The proof that such a tetrad can be found is given by
Ellis and MacCallum. ! Although their paper assumes a
perfect fluid energy momentum tensor, this assumption
is not used in deriving the tetrad. Notice, however, that
their fluid flow vector u must be replaced by our tetrad
vector e, which at this stage is independent of any fluid.
Their fluid quantities, 0,5, wys, and £,, here just
relate to the timelike congruence defined by e,. The
commutators {e,} are given by

(o1, 8] =ae, +nye3,

Iya
(16:— “1" wfBe

[ez, €3] =mnyey, (3.3)

{es, 8] =my0, —~ aey.

The group G; may be classified by placing ny, ny, and
ng into one of the canonical forms of Table L.
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TABLE I. Classification of space—times satisfying (Ai), given
by Ellis and MacCallum, ! gue originally to Bianchi, and modi-
fied by Behr. Here, h=a’/nyn;.

Bianchi—
Behr

Group group Bianchi

class  type a ny no g type
I 0 0 0 0 1
11 0 + 0 0 I

A VII, 0 + + 0 VII
VI, 0 + - 0 VI
X 0 + + + X
VIII 0 + + - VIII
% + 0 0 0 Y
v + 0 0 + v

B V1L, + 0 + + VI
VI, + 0 + - VI

(I if h=—1)

Eisenhart!® has shown that a 3-space is conformly

flat if and only if
O0=Rin=Risn— R+ (g5 R 15~ 85 R™ 10, 3.4)

where * denotes a quantity in the 3-space and | is the
covariant derivative in the 3-space. We expand (3.4)
in the tetrad (8. 1) and notethat 2,R*; =0 since the 3-
spaces are homogeneous,

0=- Vo RYs— D RYa + Tia RE + TR, (3.5)
From Ellis and MacCallum! the 3-Ricci tensor of the
homogeneous hypersurfaces is

REg=— 2 (Mol T 2 g’ s + 10 g

+ 8 45(2a% + 1y n® - Y, {3.6)

In Appendix B we have written out: 'y, R*,4, and
Egs. (3,5) in the tetrad (3. 1).

Lewmma 3,1: Space—times satisfy (Ai) and (B) if and
only if they admit: a group of Bianchi—Behr type I, a
type VI group with n,=#n,, a type IX group with ny=n,
=n3, a group of type V, a type VII, group with ny=n;
or a type VI group with a=ny=— ng,

Proof: The conditions for conformally flat surfaces
of homogeneity (3, 5) in the tetrad (3. 1) are equations
(B3)—(B6), First we consider solutions admitting groups
from class A (e@=0). Equations (B5) and (B6) are iden-
tically satisfied, Equation (B3) minus (B4) yields

(nq = ny) (303 + Bngng + 3nd — 2ngny — 2ngny — n3) =0,
@.m
Twice (B3) plus (B4) yields
{2y = n3) (3% + Bngng + 3ngt - 2ngny — ngny - 157 =0,
(3.8)
The only simultaneous solutions of (3,7) and (3, 8) are
ny=ny=mng; Ny =Ny, 3=0; 1y=n5ny=0;
or ny=ns,n,=0, 3.9

Comparing these possiblities with the canonical forms
of the class A groups in Table I, we see that the
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Bianchi— Behr group types admitted are: type I, those
type VII, with »;=n,, and those type IX with ny=#n=ny,

Now we consider solutions admitting groups from
class B (a#0, ny=0). Equation (B5) yields

{3.10)

Equations (B3) and (B6) are then identically satisfied,
Equation (B4) implies

{1y — 123) (g + n3) = 0.

(1 — n5) (2a° — 20" = ngitg — 132 =0, 3. 11)

The only simultaneous solutions of (3.10) and (3.11)
are

Ny=ng; OT Hg==—f3, A=zxMy, (3.12)

Comparing these possibilities with the canonical forms
of the class B groups in Table I, we see that the
Bianchi— Behr group types admitted are: type V, those
type VII, with ny=n;, and those type VI ; with a=n,

== 3. Qo E. D-

Lemma 8, 2: All space—times satisfying {Aii) satisfy

(B),

Proof: Kantowski!® (c.f, Ref. 15) has shown that we
may write the metric in the form

dst=-dff + X (tydr* + Y2 (1) (d6* +sin’6de?),  (3.13)

where the hypersurfaces of homogeneity are given by
{t:constant}. It is elear, after defining a new coordi-
nate p = exp(X»/Y), that the hypersurfaces of homo-
geneity are conformally flat, We can combine Lemmas
3.1 and 3, 2 into the following theorem:

Theovem 3, 3: Space—times subject to (A) satisfy
(B) if and only if they are Kantowski—Sachs or admit
one of the following Bianchi—Behr groups: type I, type
VIL with ny=n,, type IX with n;=ny=n;, type V, type
VI, with ny=n3 or type VL., with a =ny= - ns,

The results presented so far have been purely
geometric., We shall now in addition demand that the
space—times satisfy

(C) the Einstein field equations:

R 2 %Rgab: Tab’

a

(3.14)

where the energy—momentum tensor is that of a perfect
fluid
Top= tatgity + p(gas +10,0),

u>0, p=0, ©.15)

upu®=-1,
Later, we shall impose the additional restriction

(D) The fluid-flow vector u is orthogonal to the
hypersurfaces of homogeneity, i.e., u=e,

Space—times not satisfying (D) are said to be “tilted, !"”

Theorem 3. 4: All space—times satisfying (A), (B),
and (C) which do not satisfy (D) must admit a group be-
longing to one of the following types:

(i) VII, with n; =#n, (these are precisely the solutions
found by Demianski and Grischuk'?),

(ii) V [if the space is locally rotationally symmetric
(LRS), it will also admit groups of type VII, in this
case],
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TABLE II. The 3-Ricci tensor for space—times subject to
(Ai) and (B) in the tetrad (3. 1).

Bianchi—Behr

group type 3-Riccei tensor

I, VII, R¥,=0

X RYf;=Rpp=Rfy=1n*>0

v, VI, RY = R¥fy= Rt =—2a> <0
VI R¥=—4a>, R§j=-2a°,

Dyl —
R§y=—2a°, R¥=2d

(iil) VI; with ¢ =1y = -,

Proof: Theorem 3.3 implies that these solutions must
be Kantowski—Sachs or admit one of the following
Bianchi—Behr groups: I, VIL, IX, V, VII,, or VI with
suitable restrictions, Kantowski'’ has shown that the
Kantowski—Sachs solutions nus! satisfy (D), The Ricci
3-tensors of the allowed Bianchi— Behr type solutions
appear in Table II, Notice that solutions admitting
groups of Bianchi— Behr types I, VI, IX, VII,, and V
have hypersurfaces of homogeneity with isotropic
R¥s In a 3-space, an isotropic Ricci tensor is equiv-
alent to constant curvature, ' From Theorem 4, 2 of
Ref, 17 we see that such solutions are “tilted” [i.e.,
do not satisfy (D)] only if they admit a group of type V
or are Demianski— Grischuk solutions. The Demianski—
Grischuk solutions admit a tvne VII, group, !’ The LRS
type V solutions also admit a one-parameter family of
type VII, groups, ! Q. E.D,

Lemma 3, 5: Any space—time that satisfies (A),
(B), (C), and (D), and which admits a group of type IX
is Robertson—Walker,

Proof: From Theorem 3.3 we see that iy =ny=n3#0
so the Jacobi identities of the tetrad [Egs, (2,12) in
Ref, 1] imply 6;=0,=0;. Q. E. D,

3

TABLE IIl. A summary of results from Sec. 3.

Lemma 3, 6: Any space—time satisfying (A), (B),
(C), and (D) which admits a type VI, VI,, or VI,
group is LRS,

Proof: From Theorem 3.3 we see that in the type
VI case iy =ny, in the type VIL, case ny—rng and in the
type VL case ny=—ns, Again Eqs. (2.12) of Ellis and
MacCallum! imply ;= ty, 8y=463 and 6,=0,, respec-
tively. From Ref, 1 then, all cases are LRS, Q E.D,

Note that the Kantowski—Sachs solutions are LRS
since they have a nontrivial isotropy subgroup. Ellis
and MacCallum?! have shown that LRS solutions which
satisfy (A), (C), and (D): admit a group of Type I if and
only if they admit a group of type VIL; are Robertson—
Walker if they admit a group of type VII, or V, We sum-
marize these results in the following theorem,

Theorem 3,7: Any space—time that satisfies (A), (B),
(C), and (D), and which is ro! also LRS admits a group
of type I or type V.

Table III summarizes the results of Seec, 3,

V. DISCUSSION

A study of the Szekeres solutions suggests that the
assumption of conformally flat, spacelike slices may be
a fruitful one when searching for inhomogeneous cosmo-
logical solutions to the Einstein equations, The results
of Sec., 3, summarized in Table III, indicate that any
family of inhomogeneous solutions with conformally flat
slices can only contain spatially homogeneous solutions
invariant under groups of type I, VIL, IX, V, VIL, or
VI, or be of the Kantowski—Sachs form, The Szekeres
solutions extend a subset of the above listed spaces
[containing the Robertson—Walker solutions, the
Kantowski—Sachs solutions, and those LRS solutions
admitting a group of type VI.; or both types I and VI
(Theorem 2. 4)] to a family of inhomogeneous, perfect
fluid solutions, The extended family has

Space—times satisfying Those which satisfy

Those which satisfy (A),

Space—times that satisfy Space—times that satisfy
(A), (B), (C), (D) but (A, (B), (C), and (D),

(A) {A} and (B) {B), (O but rot (D) are not LRS and are LRS
I all none some (those not admit- some (those also admit-
ting a VII, group) ting a VII, group)
VII, 0Ny =iy some (the Demianski— none all with » =, (these also
Grishchuk solutions, admit a I group)
all of which have »,
=)
IX By =g = 0y none none all with ny=1ny=n;
(these are all R—W)
Vv all some some (those that are some (only the R—W
not R—W) ones)
VII, Ny =g some (only those that none all with ny=wy
also admit a V group) (these are all R—W)
Vi, Mo 1o = =g some of those with none all with wy=—ny
Ry =—ny
K-S all none none all
II, VI, VII,
1V, VI, none none none none
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(a) irrotational, geodesic flow and an expansion
tensor with two equal eigenvalues

(b) conformally flat, comoving hypersurfaces whose
Ricci tensor has two equal eigenvalues

(c) a nonbarotropic equation of state,

Our results indicate that, if one wishes to generalize
that subclass to perfect-fluid solutions satisfying (b)
and having a barotropic equation of state, then some
portion of property (a) must be discarded. If one dis-
cards either geodesic flow or two equal eigenvalues
for the expansion tensor, then the extension must in-
clude other spatially-homogeneous models in addition
to those listed in Theorem 2, 4.

ACKNOWLEDGMENTS

One of us (A, S,) wishes to thank the Department of
Applied Mathematics at the University of Waterloo and,
especially, Dr, C, B, Collins for their hospitality dur-
ing his visit, We would also like to thank Dr, J,
Wainwright for comments and suggestions,

APPENDIX A: TETRAD FORM OF THE EINSTEIN
EQUATIONS FOR THE SZEKERES METRIC

Given the Szekeres metric (2, 2), choose the ortho-
normal tetrad:

.4 0 - 0 .5 0
8= 8y =e¢™ — e2:e"a~v, 83=e¢f— | (A1)

Bt 9z

whose commutators are

[6p,04]=- 6,8, (nO sum), (A2)

(81, €] = (145 - a3) &1 + ayey, (A3)

(€2, €3] = (45— a5) @ + (n43+ ay) €y, (A4)

[e3, 8(]= (142 T a3) &~ aye, (A5)
with

by =03, (A6)
The Einstein field equations8 are then

296 +20) + (8)* +2(62)* + &(u +3p) =0, (A7)

816, + (61~ 05} a1 =0, (A8)

22(By + B2) + (02— ;) (@3 - ny3) =0, (A9)

83(0y + 09) + (62 = Oy) @z +nye) =0 (A10)

b+ 00,==Roq+t3(L—p) (nosum), (A11)
where

0= 6+ 0y + 64, (A12)
The contracted Bianchi identities are

Boki+ (1 + ) (6, +26;) =0, (A13)

ab =0, (A14)
APPENDIX B

The nonvanishing rotation coefficients

.1 1,8 6 (]
Fog= «-(6576”11 T eamtly — €rastty T 28,504~ 20454a,)
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in the tetrad (3.1) where

naB:diag(nh Ra, 713), ag= (a; o, 0)

are
Pigg=— Togy=Tyg3=—Iypy=a, ID'ppg=-T'py
=301 + 1y~ ny), (Bla)
Tygo=— Dygy = 5(= ny— ny +n3),
Tyy3=- Ty =501y - ng— ng). (Bb)
The 3-Ricci tensor given by (3. 6) in the tetrad 3.1) is
RY, =niny—ny—ng) = N, Ris=ny(ny~ny—ns) - N,
(B2a)
Ta=nglig—ng—ny) = N, REz=al,~ny), (B2b)
Riy=Rf;=0, (B2c)
where
N=2a®+ 5012 + no® + ny%) = (ngng + gy +ngny),  (B2d)

The independent equations (3. 5) in the tetrad (3.1) are

RE3=0= 2)213 - nz3 - ;233 - 7212}22 - n12n3 + n2n32

+ ety =0, (B3)
Ry =0= 9% =y = gt - nlnzz - nzzn3 + nmgz + 1112713
+2a%(ng~ ng) =0,
(B4)
Ry =0="a@n>+3u, - 3ns° +nny- 3ngy) =0, (B5)

R} =0=>a(@n? +3n,° - 3" + nyng - 3nms) =0,  (B6)
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A new definition of asymptotic flatness in both null and spacelike directions is introduced. Notions
relevant to the null regime are borrowed directly from Penrose’s definition of weak asymptotic simplicity.
In the spatial regime, however, a new approach is adopted. The key feature of this approach is that it
uses only those notions which refer to space-time as a whole, thereby avoiding the use of a initial value
formulation, and, consequently, of a splitting of space-time into space and time. It is shown that the
resulting description of asymptotic flatness not only encompasses the essential physical ideas behind the
more familiar approaches based on the initial value formulation, but also succeeds in avoiding the global
problems that usually arise. A certain 4-manifold—called Spi (spatial infinity)—is constructed using well-
behaved, asymptotically geodesic, spacelike curves in the physical space-time. The structure of Spi is
discussed in detail; in many ways, Spi turns out to be the spatial analog of I. The group of asymptotic
symmetries at spatial infinity is examined. In its structure, this group turns out to be very similar to the
BMS group. It is further shown that for the class of asymptotically flat space-times satisfying an
additional condition on the (asymptotic behavior of the “magnetic” part of the) Weyl tensor, a Poincaré
(sub-) group can be selected from the group of asymptotic symmetries in a canonical way. (This additional
condition is rather weak: In essence, it requires only that the angular momentum contribution to the
asymptotic curvature be of a higher order than the energy-momentum contribution.) Thus, for this
(apparently large) class of space-times, the symmetry group at spatial infinity is just the Poincaré group.
Scalar, electromagnetic and gravitational fields are then considered, and their limiting behavior at spatial
infinity is examined. In each case, the asymptotic field satisfies a simple, linear differential equation.
Finally, conserved quantities are constructed using these asymptotic fields. Total charge and 4-momentum
are defined for arbitrary asymptotically flat space-times. These definitions agree with those in the
literature, but have a further advantage of being both intrinsic and free of ambiguities which usually arise
from global problems. A definition of angular momentum is then proposed for the class of space-times
satisfying the additional condition on the (asymptotic behavior of the) Weyl tensor. This definition is
intimately intertwined with the fact that, for this class of space-times, the group of asymptotic
symmetries at spatial infinity is just the Poincaré group; in particular, the definition is free of super-
translation ambiguities. It is shown that this angular momentum has the correct transformation properties.
In the next paper, the formalism developed here will be seen to provide a platform for discussing in detail

the relationship between the structure of the gravitational field at null infinity and that at spatial infinity.

1. INTRODUCTION

There are two distinct regimes in which the
asymptotic behavior of the gravitational field has
been investigated in detaill: at large separations from
sources in null directions, and in spacelike direc-
tions. These investigations have yielded a great
deal of information about properties of gravitating
systems, information which has been crucial to the
construction of mathematical models of isolated
systems in general relativity.

In the null regime, the asymptotic structure was
first examined in detail by Bondi, Van der Berg,
and Metzner? and Sachs;? their results were reformu-
lated and extended by Penrose.! Penrose’s analysis
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provided a basis for later work® due to Newman,
Newman and Penrose, Schmidt, Winicour, and
others. These investigations have been crucial to
the study of radiation—especially gravitational
radiation—and also to the development of several
ideas concerning global issues in general relativity.
In particular, a great deal of the analysis of black
holes, singularities, and, more recently, of H-
spaces and of asymptotic quantization of zero rest-
mass fields relies heavily on concepts introduced
originally in the investigation of null infinity. In the
spatial regime, major developments first came from
the work of Arnowitt, Deser and Misner, ¢ and
Bergmann, ? This work was later reformulated and
extended by Geroch. 8 Independently, investigations
have been made by O’Murchadha and York, Regge
and Teitelboim, and others.? All these developments
have also played an important role in the analysis
of global problems. In particular, they have pro-
vided a basis for examining issues such as the posi-
tivity of (total) energy in general relativity, the
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superspace formulation, and canonical quantization
of gravity.

The key idea in both?? sets of investigations is the
following: One uses conformal transformations to
bring “infinity” to a “finite distance’”’—more pre-
cisely, to attach suitable boundaries representing
infinity—and then explores the asymptotic structure
of the gravitational field by applying techniques from
local differential geometry at points representing
infinity. This procedure has several advantages: It
avoids the heuristic considerations otherwise in-
volved in taking limits, is manifestly coordinate
independent, and, furthermore, simplifies compu-
tations. Vigorous work has been carried out using
these techniques and a rich conceptual and mathe-
matical structure has arisen in each regime.!

Unfortunately, however, very little is known
about the connection between the two, Does asymp-
totic flatness in one regime, together with some
simple and natural conditions, imply asymptotic
flatness in the other ?!? In each regime, there arise
groups of asymptotic symmetries, Is there any
relation between these groups? Is there any relation
between the conserved quantities which emerge from
these groups ? Not only are these issues unresolved,
but in most cases, one does not know even how to
formulate precise questions. Consider, for example,
the notion of energy—momentum. In the spatial
regime, one associates with isolated bodies a set of
four numbers—the ADM 4-momentum—which repre-
sent the “total 4-momentum of the entire system in-
cluding gravitation. -3 In the null regime, one in-
troduces another quantity—the Bondi 4-momentum—
which represents the 4-momentum “left over” at a
retarded instant of time. > It is natural to conjecture
that the ‘“difference’”~—in an appropriate sense—
between the two quantities would represent the 4-
momentum which has been radiated away until the
retarded time under consideration. Unfortunately,
the two existing descriptions are so disconnected
from each other that it has not been possible to
obtain even a precise formulation of this conjecture,
let alone its proof or disproof! The essential diffi-
culty is that the two vectors—as constructed—belong
to entirely different vector spaces; hence one cannot
even introduce the notion of their difference.

Why have the two formulations remained so dis~
joint from each other? It turns out that, in spite of
close similarities, the two do differ from each other
in a fundamental way: Whereas the standard frame-
work for describing null infinity respects the four-
dimensional character of space—time, that for
spatial infinity requires a splitting of space—time
into space and time. This difference permeates the
two sets of analyses thoroughly. Thus, in the null
regime, the asymptotic conditions refer to space—
time as a whole, while in the spatial regime, they
refer to spacelike 3-surfaces. As a consequence,
null infinity turns out to be a boundary of the space—
time manifold itself, and the physical fields which
enter the discussion are all “four-dimensional”’ ,
ones—the space—time metric, its curvature tensor,
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and various zero rest-mass fields. Spatial infinity,
on the other hand, arises as a boundary of a space-
like three~surface and fields of interest in this case
are all “three-dimensional” ones—Cauchy data for
gravitation and matter fields. Thus, the usual formu-
lation in the null case is “four dimensional’’ in spirit
while the one in the spatial case is “three-dimen-
sional.”” The essential reasons which have kept the
two sets of analyses disjoint from each other can

be traced back to this difference. Hence, a frame-
work which attempts to unify the two must first
overcome this difference: One of the two descriptions
needs to be reformulated in the spirit of the other.

From aesthetic considerations, it is clearly the
spatial description that needs reformulation. Techni~
cal considerations lead to the same conclusion:

Quite apart from the issue of unification, the “three-
dimensional” aspect of the usual description leads
to some awkwardness in the spatial regime itself.

Recall®® that, in this description, a space—time
is said to be asymptotically flat at spatial infinity if
it admits a surface on which the initial data approach
the data on 3-planes in Minkowski space at an appro-
priate rate as one goes to infinity in spacelike direc-
tions. Unfortunately, however, the existence of one
such Cauchy surface does not guarantee the existence
of a “sufficient number’’ of them. Already for linear
fields in Minkowski space, analogous results require
a great deal of care in one’s choice of asymptotic
conditions: Even apparently minor modifications of
the “‘correct” conditions have the effect that although
the modified conditions are satisfied on one space-
like plane, after evolution, they need not be satisfied
on a hoosted one. !! In general relativity, the situation
is further complicated first by the absence of a
“background”’ geometry and second by the nonlinear~
ity of field equations. Indeed, the present state of
affairs is again such that one does not even know how
to formulate appropriate questions. Consider, for
example, the notion of two Cauchy surfaces “boosted”
relative to each other. In the usual descriptions of
spatial infinity a precise formulation of this notion
has always run into some global problem or an-
other. 1 Hence, strictly speaking, one cannot even
ask if asymptotic flatness of initial data sets will
be preserved under boosts. The general procedure
adopted so far essentially ignores all such global
issues and just assumes-—although often implicitly—
that if there exists one asymptotically flat data set
in the given space—time, then there exist “‘a suffi- -
cient number” of them. This assumption permeates
the entire analysis and weakens many results
substantially. !

All these considerations motivate the need of a
new description of the asymptotic structure of the
gravitational field at spatial infinity; a description
which is “four-dimensional in spirit, >’ which is free
of global problems and which will serve as a platform
for unification of the results obtained separately
in the two regimes. Our purpose here is to obtain
such a description. In the next paper, we shall dis-
cuss in detail the relation between the various notions
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introduced here in the spatial regime and their
well-known analogs in the null regime.

The basic ideas underlying this work may be sum-
marized as follows. In the null regime, we shall
borrow the notion of asymptotic flatness directly
from the traditional one—i.e., from Penrose’s!
definition of weak asymptotic simplicity. In the
spatial regime, however, we adopt a new approach.
To see this, consider, first Minkowski space—time.
Recall that in the standard conformal completion,
one obtains as its boundary not only null infinity
g, but also three additional points, i*, 7, and 7°.
These three points represent, respectively, future
timelike infinity, past timelike infinity, and spacelike
infinity of Minkowski space. ! The key idea in the
new approach is to attach to space—times which are
to be regarded as asymptotically flat, not only ¢ but
also a point “analogous to %, ”” In the Minkowski case,
% can be characterized as the vertex of the “light
cone at infinity, ” i.e., of ¢. Therefore, given a
space—time which is asymptotically flat in the null
regime, one wishes to regard it as asymptotically
flat also in the spatial regime provided one can attach
to its null boundary ¢ a single point i’ such that, in
the new completion, ¢ is the null cone of i,

The essential difficulty arises of course in the spe-
cification of the details of this completion: One must
introduce appropriate differential structure at ¢* and
impose suitable conditions on the behavior of the
conformally rescaled metric and of other physical
fields. The selection of these conditions is a delicate
issue. If the conditions are too weak, one might have
too little structure available at ° to introduce physi-
cally interesting notions, or even worse, the com-
pletion might turn out to be so nonunique that the
resulting analysis might inherit essential ambigui~
ties. If, on the other hand, the conditions imposed
are too strong, they might accommodate so few
space—~times that the resulting analysis might be
totally uninteresting., These broad features are of
course common to any analysis of asymptotics, and
in particular to the analysis of null infinity. However,
in the null regime, simplifications arise from the fact
that ¢ turns out to be a boundary of space—time.
Thus, for example, as a direct consequence of this
fact, smooth fields on the physical space—time
satisfying conformally invariant equations automati-
cally admit smooth extensions to ¢ (after appropriate
conformal rescalings) thereby simplifying the issue
of differentiability conditions enormously. The situa-
tion is much more intricate in the spatial regime:
One just does not expect physically interesting fields
to acquire smooth limits at °. To see this, consider
first the Maxwell field of a freely falling point charge
in Minkowski space. After conformal completion, the
appropriately rescaled field (i. e., the field which
satisfies Maxwell’s equations w.r.t. to the rescaled
metric) is C* on ¢, How does it behave at i{'? We
claim that in fact it diverges, and, furthermore,
cannot be made into a smooth, nonzero field by any
rescaling using the conformal factor, One can see
this rather easily geometrically. Fix any 3~plane
in Minkowski space. Together with i® the plane be~
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comes a compact submanifold——topologically a 3-
sphere—of the completed space—time. Since the
total charge on a compact spacelike 3-manifold

niust be zero, it follows that there must exist an
effective “image” charge at i°, and hence that the
(rescaled) Maxwell field there must diverge in a
direction-dependent way, The geometrical nature of
the argument suggests that a similar situation might
also exist in the gravitational case. This expectation
is in fact confirmed by examples: The existence of

a nonzero mass manifests itself in the singularity

of the Weyl tensor at ¢°116 Thus, except in Minkowski
space, one does not expect the (rescaled) metric to be
even C? at 79, As a result, the discussion of the differ-
entiability conditions to be imposed on various fields
becomes rather involved in the spatial regime.

This issue is discussed in Sec. 2, and a new defini-
tion of asymptotic flatness at null and spatial infinity
is proposed. This definition is completely four dimen-
sional in spirit: It is formulated using only the 4-
manifold and “four-dimensional” fields theorem.
Consequently, in the resulting analysis, global
problems normally associated with the evolution of
asymptotically flat initial data sets simply do not
arise. However, given a space—time which is asymp-
totically flat in the sense of the new definition, one
might introduce 3-surfaces and examine the issue of
evolution of asymptotically flat initial data sets. It
turns out that, due to the introduction of the point ¢°,
not only can one now formulate necessary notions to
ask precise questions concerning this evolution, but
also answer these questions in detail. This issue
is examined in detail in Appendix B; it is shown that
space—times which are asymptotically flat in the new
sense do admit “a sufficient number” of asymptotical-~
ly flat initial data sets. We emphasize that this result
is not directly relevant to our analysis; it merely
serves to connect the present framework with the
ones in the literature. Note, however, that we have
not solved the problems associated with the evolu-
tion of asymptotically flat data sets: The “four-di-
mensional” definition of asymptotic flatness simply
circumlocutes these problems. In Appendix C we
discuss the issue of existence of examples satisfying
the new definition.

The “direction-dependence” of the limits of various
physical fields at i’ is almost inevitable: One can
reach i by moving away from sources in completely
different spatial directions. Thus, the essential
reason behind the intricate behavior of fields at i°
is simply that :—the spatial boundary—is a single
point and that the entire information about asymptotic
behavior of fields at spatial infinity registers itself
at this point. One is therefore led to look for a suit~
able “blowing up” of i which can display all this
information in terms of smooth fields on the blown-
up structure, In Sec. 3, we present such a blowing-~
up procedure. The result is a certain 4-manifold
which has the structure of a principal fibre bundle
over the unit timelike hyperboloid in the tangent
space at %, with the additive group of reals as the
structure group. This 4-manifold is called Spi—
spatial infinity.!” The structure it inherits from
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its construction is examined. Apart from the fibre
structure, it has a preferred (degenerate) horizontal
metric (the pull back of the metric on the unit time-
like hyperboloid at % and a vertical vector field
(the generator of the structure group). Intuitively,
each point of Spi represents “an asymptotically
distinct way of approaching inﬁnity in spacelike
directions, ”” i.e., of approaching i’. Consequently,
even though physical fields admit only direction-
dependent limits at % they induce smooth fields on
{and, in some cases, on cross sections of) Spi.
Indeed in the final analysis, the situation at spatial
infinity turns out to be rather similar to that at null
infinity. In particular, as far as the universal
structure at infinity is concerned, Spi plays essen~
tially the same role in the spatial regime as ¢ does
in the null. This similarity is perhaps to be anti-
cipated: A point of ¢ can also be thought of as a
distinct way of approaching infinity in null direc-
tions. Similarities—as well as differences—between
the two regimes are also pointed out in Sec. 3.

In Sec. 4, we investigate the group (; of asymptotic
symmetries, i.e,, the subgroup of the diffeomor-
phism group of Spi which leaves its universal struc-
ture invariant. In its structure, ( turns out to be
analogous to the BMS? group: It has an infinite dimen-
sional, Abelian, normal subgroup—called the sub-
group of Spi supertranslations—and a preferred
four-dimensional Abelian normal subgroup—called
the subgroup of Spi-translations—the quotient of
the full group by the supertranslation subgroup being
isomorphic with the Lorentz group. Furthermore,
it turns out that there is a natural homomorphism
from the group of allowable conformal rescalings of
the unphysical metric onto the supertranslation
subgroup. Hence, the full groupg can also be
realized as the semidirect product of the (quotient
by the kernel of the above-mentioned homomorphism
of the) group of conformal rescalings and the Lorentz
group. Although this alternative description of the
group is arrived at in a somewhat indirect fashion,
it turns out to be the most useful one in the analysis
of the asymptotic behavior of physical fields.

This analysis is carried out in Sec. 6. Specifically,
we consider the zero rest-mass scalar field, the
electromagnetic field, and the gravitational field.
(Although the first of these is not of direct physical
interest, it is included in the discussion to illustrate
some mathematical techniques.) The (highest order)
asymptotic behavior of these fields is described,
respectively, by a scalar field ¢, a pair (E,, B,) of
vector fields, and a pair (E,, B ,) of second rank
symmetric trace-free tensor fields on the hyperboloid
K of unit spacelike directions in the tangent space of
4% (Thus, when regardeéd as fields on Spi, these
fields are constant along fibres, reflecting the fact
that they are invariant under Spi supertranslations, )
E, and B, may be regarded as the asymptotic electric
and magnetic fields relative to the hypevboloid K ;'3
and E , and B, the electric and magnetic parts of
the asymptotic Weyl curvature. Taking suitable
limits of the field equations, we obtain the asymptotic
equations for the asymptotic fields. It turns out that,
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although in the physical space~time one has nonlinear
coupled differential equations, in the limit, asymptot-
ic fields decouple and all the nonlinearities disappear.

Section 6 is devoted to conserved quantities. Since
#0 may be regarded as the “limit”’ of a sequence of 2~
spheres with increasing radii (in the physical space—~
time), one expects to recover from asymptotic fields
only those conserved quantities—such as total elec~
tric and magnetic charges, total 4~momentum and
angular momentum—which are expressible as 2-
surface integrals.or limits thereof. (Thus, the situa-
tion is quite different from that at null infinity: Con-
served quantities—such as the energy—momentum
of test fields in, say, Minkowski space—expressible
as 3-surface integrals in the physical space—time
can be recovered from asymptotic fields on ¢.) We
first consider the electromagnetic case and obtain
expressions for electric and magnetic charges in
terms of integrals over 2-sphere cross sections of
the hyperboloid X involving the fields E, and B,,
respectively. We then focus on the asymptotic gravi-
tational fields E,, and By,. It turns out that the fotal
4-momentum-—including the contribution of the
gravitational field itself—of the system can be ex-
pressed in terms of 2-sphere integrals involving

- (As one might expect, the analogous “con-
served quantity”’ involving B, the “angular momen-
tum monopole, ** vanishes identically.) The final
definitions of all these quantities—the electric
charge, the magnetic charge, and the 4-momentum—
are essentially the same as those available in
literature. 5+%1 However, the present treatment has
the advantage that, being ““intrinsic,”’ it is free of
coordinate ambiguities, and, being ‘“four-dimensional
in spirit, ” it is free of global problems normally
associated with the issue of preservation of asymptot-
ic conditions under evolution. Finally, we introduce
a new conserved quantity: the angular momentum.
For this purpose, we have to make a restrictive
assumption: It is only when the field B, on A van-
ishes that we can define angular momentum. Since
E,, and B, together contain information about “1/#*
part” of the Weyl curvature in the physical space—
time, the condition on B,, essentially requires that
the “1/r contribution” should arise only from the
total energy—momentum of the isolated system. This
condition serves two purposes, First, it enables one
to introduce certain preferred cross sections on Spi,
thereby reducing the infinite dimensional groupg
to the Poincaré group. Second, we can now introduce
a new field which carries mformatlon about ‘‘the next
order behavior” of—i. e,, the “1/r% contribution’”
to—the magnetic part of the asymptotic curvature.
This new field arises naturally as a tensor field on
the preferred cross sections of Spi, rather than on
on X; it fails to be invariant under the action of
translations on these cross sections. Angular mo-
mentum is defined using 2-sphere integrals of this
field, This definition—being inseparably intertwined
with the above mentioned Poincaré group—is free of
the usual “supertransiation ambiguities.

The material covered in the main sections of the
paper divides itself into two parts; the first part
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(Secs., 3 and 4) deals with the universal structure at
spatial infinity, the second (Secs. 5 and 6), with
asymptotic fields and conserved quantities, In writing
the second part, we have deliberately made as little
reference to the first as possible. Thus, a reader
interested mainly in conserved quantities may skip
the discussion on universal structure—especially
technicalities connected with Spi-—without losing

the main line of argument.

Before concluding this section, we wish to em-
phasize an important point which is often only im-~
plicit in discussions of infinity. General relativity,
by itself, is a completely self-contained theory
without the need of any detailed framework describ-
ing infinity: It is only because one is interested in
capturing the intuitive notion of an isolated system
in a mathematically precise fashion that one is in-
terested in these frameworks. Therefore, the de-
finitions one introduces, constructions one makes,
and the notions one formulates in discussing the
asymptotic structure of the gravitational field are
arbitrary to some extent; their justification lies
essentially in their utility. Thus, in principle, it is
quite possible to have several distinct frameworks
all of which are useful in different ways. In particu-
lar, the utility of one approach does not invalidate
any other, The framework presented here is thus
just one of the many possible ones and, in essence,
its value lies only in its ability to introduce useful
notions in the spatial regime and to relate them to
their analog in the null regime.

2. ASYMPTOTIC CONDITIONS

In this section, we introduce a definition of asymp-
totic flatness at null and spatial infinity and discuss
its relation with definitions used in the other
formulations.

The basic idea in the present approach is to use
the same notion of asymptotic flatness in the null
regime as in Penrose’s!* definition of weak asymptot~
ic simplicity and to simply supplement this definition
by appropriate conditions to incorporate asymptotic
flatness also in the spatial regime., How are these
additional conditions to be chosen? One only has the
following general set of criteria: (i) conditions should
be formulated in a ‘“four~dimensional” spirit, i.e.,
they should not require the introduction of any split-
ting of space—time into space and time; (ii) they
should be strong enough to yield a sufficiently rich
structure, a structure which can enable one to
introduce physically interesting notions at spatial
infinity and to relate them to those available at null
infinity; and, (iii) they should be weak enough to
allow a sufficient number of examples; space~times
which are “obviously asymptotically flat” from
physical considerations should, in particular, satisfy
these conditions.

How do the conditions usually imposed at spatial
infinity fare with respect to these criteria? To be
specific, let us consider Geroch’s? formulation of
the Arnowitt—Deser—Misner® conditions (ADM—G
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conditions). Although these are ‘“‘three dimensional”
in spirit, they do indeed have the ‘“correct”
strength: They admit a wide class of examples and
also enable one to introduce interesting physical
notions, Thus, what we need is a set of conditions
which are essentially as strong as these but which
are more “four dimensional” in spirit; conditions
which are manifestly free of global problems asso-
ciated with the emphasis on “three dimensions. > Let
us therefore begin with a brief review of the ADM-—G
conditions, This review will also be useful later
while examing the modifications called for by the
new approach. The key notion in the ADM~—G formu-
lation is that of asymptotically flat initial data sets.
One introduces this notion as follows. Fix a space-
like surface T with an initial data set (g,,, p,;)—the
intrinsic metric and the extrinsic curvature—satis-
fying the vacuum constraint equations outside some
compact region representing sources. One adds to
this T a single point A—the point at infinity—there-
by obtaining a new 3-manifold T, (If T is topological-
ly R® this procedure is just the one point compacti-
fication of T, so that Tis topologically s%.) Various
conditions on q,; and p,, are now formulated in
terms of their behavior near A, More precisely, the
data set is said to be asymptotically flat provided
there exists a scalar field Q on T which is C? at

A, C” (and positive) everywhere else, such that

(i) 9|A~0 D) =0, and, R,:=lim_ Q"D D,Q
~2Q%q,,) exists as a d1rect10n—dependent19 tensor at
A; (ii) there exists a metric qab on T which is C° at
A and C® elsewhere with g, q b—Q 44 €verywhere on

T; and, (iii) R, =1lim . Q2R and pp=lim L ,Qp,,
exist as direction-dependent tensors at A. (Here,

D, is the derivative operator on (T, §,,) and

is the Ricei tensor of dgp-) Conditions (i) and (11) on
the conformal factor & and the metric ¢, are sug-
gested immediately by the standard conformal com-
pletion of the Euclidean space. Condition (iii) {and
also the precise differentiability requirement in (ii)],
on the other hand, has a more subtle origin: It arises
only after a careful investigation of examples.®

The idea now is to capture the essence of these
conditions in a “four-dimensional’’ spirit. Consider,
first, Cauchy surfaces in Minkowski space. To ex-
amine the asymptotic behavior of initial data sets on
these surfaces & la ADM—G one must first complete
each surface by adding a single point. Note, however,
that the Penrose completion!d of Minkowski space
already provides a point, #°, which can simultaneous~
ly serve as the point at infinity for all these sur-
faces! Indeed, in the completed space—time, to-~
gether with ® each of these surfaces becomes, topo-
logically, a 3-sphere. Moreover, the point ¢° itself
does not refer to any preferred Cauchy surface; it
can be introduced without having to make any split~-
ting of space—time into space and time, The idea
therefore is to introduce a point analogous to % in
more general contexts, a point which is at once the
point at spatial infinity for all (well behaved) Cauchy
surfaces. As remarked in the Introduction, this can
be achieved by just attaching to {-—the null cone at
infinity—its vertex. Next, we must specify the be-
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havior of various fields at this newly attached point.
It is here that we draw heavily on the ADM~—G con-
ditions: We wish to require that the various space—
time fields—the conformal factor, the rescaled
metric, its Weyl tensor, and possible matter fields—
have exactly that behavior which can guarantee the
existence of a “sufficient number” of initial data sets
which are asymptotically flat in the sense of these
conditions. More precisely, we wish to require that
the behavior of fields be such that, given any three-
dimensional, spacelike subspace of the tangent space
at %, there exists at least one Cauchy surface (in

the physical space—time) with an asymptotically flat
initial data set, whose tangent space at % in the com-
pletion coincides with the given subspace. If this
requirement can be satisfied, not only will the re-
sulting asymptotic conditions be of the ‘“correct”
strength, but they will also be free of the global
problems discussed in the Introduction.

The ADM—G conditions on the conformal factor
can be translated to four dimensions in a straight-
forward way; one has only to replace the 3-metric
and the corresponding derivative operator by the 4~
metric and its derivative operator. The continuity
requirement on the 3-metrices can be satisfied only
if the rescaled 4-metric is itself continuous at .
The requirement on extrinsic curvatures, however,
is more severe: Since the extrinsic curvature in-
volves the metric connection, the continuity of the
rescaled metric, by itself, cannot guarantee the
existence of even a single initial data set satisfying
this requirement. One is therefore led to impose
stronger conditions on the 4~metric. It is here that
major complications arise. Consider, first, the
obvious way to achieve the required strengthening,
Demand that the rescaled 4-metric be C! at %, This
condition would indeed do the job: It does guarantee
the existence of a “sufficient number” of asymptoti~
cally flat initial data sets, Unfortunately, however,
the condition is too strong: It turns out (as we shall
see in Sec. 6) that discontinuities in the (rescaled)
metric connection are, in essence, a measure of
the total mass of the isolated system described by
the given space~time, and hence, that the ADM 4-
momentum associated with the space—time vanishes
identically if the (rescaled) metric is C! at {0120
Thus, one is forced to make the awkward require-
ment that the 4-metric be better behaved than a
CY field but not be C! at %, As the above remark on
the ADM 4-momentum suggests, the appropriate
condition turns out to be the following: Demand that
not only should the metric be C? at %, but also the
metric connection should admit a direction-dependent
limit there. Finally, consider the ADM—G condition
on the three-dimensional Ricci tensor. It is straight-
forward to show (using the source-free Einstein’s
equation) that one can translate this condition to a
condition on the Weyl tensor of the 4~-metric which
is guaranteed to be satisfied by the differentiability
requirements on the metric., Thus, we are led to
the following definition,

Definition: A space—time (M, g,;) will be said to
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be asyi';'zptoti‘cally empty and flat at null and spatial
infinity (AEFANSD) if:

(i) There exists a manifold M with boundary
(6M=: ¢) equipped with a (C%) conformal structure,
and, an imbedding of M into M which displays (M,
gab) as a weakly asymptotically simple space—time,

(ii) There exists a manifold M with a (Lorentz)
metric gra,, and a_conforznal—structure-prg_serving
imbedding ¢ of M into M (which is C* on M),

(iii) There exists a point :® in M with the following
properties:

(a) M has a C*! differential structure at %, and
g is C0at 0,4

() In B, ¥(¢) is the null cone of i’

(c) The function @ defined on ¥(M) via ¥_(Z,,)
= Q%g,, admits a C? extension at i’, with @] ;0=0,
(9,01 ;0=0, (V,V,Q—2g,)1;0=0; and finally,

(iv) The Ricci tensor R, of g,, vanishes in the
intersection in M of the image of the physical space—
time with some neighborhood of ¢ U 70,

In essence, condition (i) guarantees that the space—
time is asymptotically flat in null directions, while
conditions (ii) and (iii) ensure that it is asymptoti-
cally flat in spacelike directions, and that the
structures arising in the two regimes are as com-
patible as possible, ?* [The differentiability require-
ments (iii, a) on (M, g,,) just assures that the metric
connection admits a regular direction dependent
limit at {%—i. e., has smooth “angular” behavior but
possibly finite discontinuities in the “radial direc-
tions,”” For the definition of C> differentiability,
see Appendix A.] The manifold has been introduced
in the definition just to include i 2—the point at
spatial infinity—together with its differential and
conformal structure in the completion; a simple
attachment of i to M would have resulted in a
“manifold with a corner, ” which, in turn, would
have prevented us from making a straightforward
use of local differential geometry at i, [The pre-
cise differentiability requirements in condition (ii)
are motivated by examples. For details, see
Appendix C.] Finally, we note that the various con-
ditions in the definition can also be motivated with~
out any reference to the ADM—G formalism: Con-
ditions (i), (i), and (iii.b) are geared to incorporate
the intuitive idea that ““i° be the vertex of the light
cone of infinity;’” (iii.c) ensures that the conformal
factor @ has the same asymptotic behavior (near %)
as in Minkowski space, i.e., that it “falls off as
1/7?%; and, as shown in Appendix A, the differentia-
bility requirements imposed via (iii. a) are precisely
such as to ensure that Weyl curvature ‘““falls off as
1/73» in the physical space—time,

As explained in the Introduction, in this paper we
are concerned more with the structure of spatial
infinity than with the detailed relation between spa-
tial and null infinity. Consequently, for the purpose
of this paper, of all conditions in the definition, only
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condztzon (iii. a) on differentiability of the metric
2 at 1% (iii. c) on the behavior of the conformal
factor SZ and (iv) on the Ricci tensor Ry, will be of
divect relevance. The other conditions will play an
important role only in the next paper.

It follows directly from the ahove definition that
every point in the physical space—time lmore pre-
cisely, of its image ¢(M) in M] is spacelike related
to %, Asa consequence, the point i’ serves as the
“spatial boundary” of the physical space—~time very
much as the 3-surface ¢ serves as the null houndary.
The fact that the spatial boundary consists of a single
point is perhaps the most important aspect of the
above completion; an aspect which adds to the com-
pletion complexity in some ways and richness in
other. Thus, for example, the intricacy of differ-
entiability requirements at ¢’ can be easily traced
back to this aspect: It is because ¢ is a single point
that the limits attained by physical fields on space—
time are forced to be direction-dependent, On the
other hand, ¥ provides us with a preferred point in
the completed space—time and this turns out to be
useful in many ways. For example, isometries in
physical space—times can be characterized and
class1f1ed rather easily by examining their exten-
sions to 7%, 2 Furthermore, the tangent space at ¢°
will be seen to provide a natural home for various
conserved quantities—ADM and BMS 4-momenta,
multipole moments in the stationary case, etc.—
making it easy to investigate the relation between
them.

Note that, although the definition of AEFANSI
space—times was arrived at by using the ADM—G
framework, in the final version, the definition itself
makes no refevence to initial data sels; it refers
only to “space—time” fields. Hence, in the present
formulation, global problems associated with pre-
servation of asymptotic conditions under evolutions
simply to not arise. Nonetheless, having obtained the
notion of AEFANSI space—times, one can, if one
wishes, introduce spacelike 3-surfaces and ask for
the status of these evolutions, It turns out that a
complete analysis of this issue can be made, First,
one can show that AEFANSI space—limes do admit
“a sufficient number” of asymptotically flat initial
data sets: Given a spacelike, three-dimensional
subspace of the tangent space at i% there exist as
many asymptotically distinct spacelike 3-surfaces
with asymptotically flat initial data sets in the phys-
ical gpace—time, which, in the completion, are tan-
gential to the given subspace at i, as there are func-
tions on a 2-sphere. Next, using the tangent space
at 7, one can now introduce, unambiguously, the
notion of Cauchy surfaces which are boosted or time-
translated with respect to each other. Therefore,
one can meaningfully formulate questions about evolu-
tions. Finally, using techniques from local differ-
ential geometry at %, one can also answer these
questions in detail: Evolutions which are asymptoti-
cally regular do preserve the ADM—G conditions.
Thus it appears that AEFANSI space—times offer
an ideal home for discussions involving asymptoti~
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cally flat initial data sets. Since in this paper we
use only those notions which refer to space—time
as a whole, a detailed discussion of the results
quoted above has been relegated to Appendix B.

Finally, we remark that condition (iv) in the de-
finition of AEFANSI space—times can be relaxed
to admit zero rest-mass fields in a neighborhood of
infinity.  Since, in a curved space—time, con-
formally invariant zero rest-mass equations are in
general consistent only for spins less than 2, we
need to consider only these fields. Then (iv) may be
replaced by:

(iv)’ Fields &, d)A, » Satisfying the zero rest-
mass equations on (M, ga,,) for spins 0, 3, and 1,
respectively, are permlss1b1e sources at infinity
provided &, 4, and F,, admit smooth extensions to
@, and, 1723, Q3/4y,, and @F,, admit regular
direction-dependent limits?! at i

Here the conditions on the behavior at ¢ are the
usual’ ones, Those at i” are motivated by the ones
required in Minkowski space to guarantee finiteness
of energy—momentum and, in the case of Maxwell
field, also the finiteness of total charge.

I. UNIVERSAL STRUCTURE AT SPATIAL INFINITY
3. SPi

In the previous section, we introduced the notion
of AEFANSI space—times. In a sense, all that now
remains is to examine the behavior of various phys-
ical fields in the neighborhood of the boundary
7% to introduce conserved quantities, and to
obtain relations between them. However, the fact
that % is a single point introduces complications in
such a program. In particular, various physical
fields admit only direction-dependent limits at 7°
and hence it is rather awkward to examine their
behavior using only the framework introduced so
far. What is needed is some sort of “blowing up” of
i%; One might hope that in the limit, physical fields
will register themselves as smooth fields on an
appropriate blown-up structure. The purpose of this
section is to obtain such a structure. Quite apart
from simplifying the analysis of asymptotic fields,
this blowing up turns out to be valuable in its own
right. In particular, we shall see that it provides an
arena for describing the universal structure in the
spatial regime and plays a key role in the discussion
of asymptotic symmetries.

How is this blowing up to be achieved? What is
needed is an appropriate modification of the standard
blowing-up procedures used in algebraic geometry;

a modification which can incorporate the additional
differentiable and metric structures available. Let
us therefore begin by examining these structures.
Consider first the differentiable structure. The com-
pleted manifold M is only guaranteed to be C*! at i,
Hence, using the differentiable structure one can only
construct the first- and second-order tangent spaces
there. Intuitively, this means that one cannot dis-
tinguish between two geometrical structures—e. g.,
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submanifolds of M—which agree up to second order
at {%; indeed, one cannot even examine their higher-
order behavior! This lack of distinguishability gives
rise to severe constraints on the possible directions
to proceed: One must obtain the required blowing up
using only the first- and second~order behavior of
geometrical objects at i,

Two classes of such objects at once present them-
selves: spacelike, three-dimensional submanifolds,
and spacelike curves in (M, gab) Intuitively, these
represent two distinguished classes of paths to
approach spatial infinity; in the physical space—time
one can move away from sources along spacelike
Cauchy surfaces or along inextendible spacelike
curves. It turns out that the use of either one of
these leads to essentially equivalent blown-up struc-
tures. However, the use of curves turns out to have
two advantages in the analysis of the asymptotic
behavior of physical fields. First, since these fields
admit direction-dependent limits at 9, they appear
as divection-independenf—in fact smooth-—fields on
the space of curves while they remain® direction-
dependent as fields on the space of Cauchy surfaces.
Second, it turns out that the use of Cauchy surfaces
leads to the introduction of the initial value formula-
tion and hence of “spatial” fields while the use of
curves enables one to deal always with ‘““space—time”
fields, thereby simplifying the analysis. Therefore,
in this paper we shall work with spacelike curves;
equivalence of the resulting blown-up structure with
the one obtained using Cauchy surfaces will be dis-
cussed elsewhere. 20

To summarize, we wish to construct the required
blown~up structure using various asymptotically
distinct, inextendible spacelike curves in the physi~
cal space—time, The resulting structure will, in
many ways, be the spatial analog of ¢; ¢ can also
be constructed using certain inextendible curves-—the
null geodesics—in the physical space—time. Note
that, in the null regime, one does not consider arbi-
trary null curves but only those which are geodesics;
a point of ¢ represents a “good” way of approaching
infinity in null directions rather than an arbitrary
one. Similarly, in the spatial case, one must specify
some regularity conditions; we must choose only
“good” ways of approaching 7. Indeed, in the ab-
sence of such conditions, the blown-up structure will
be infinite dimensional and hence not very useful.

How are these conditions to be selected? An ob-
vious strategy presents itself: We should impose as
many regularity conditions as the universal structure
of AEFANSI space~times permits. First, we have
C*! differentiability at . So we shall require that the
curves be C*! at i¥ and C* everywhere else. This
will enable us to examine both velocity and accelera-
tion—the first- and the second-order behavior—of
curves at 1% Next, we have the metric at °. We can
use it to make demands on the parametrization of
curves: Only those curves p(A) (with p= 8 and
AeIR) are to be allowed for which p(0) is ¥ and the
tangent vector at 0 is unit. The first of these two
requirements is rather trivial. The second, how-
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ever, is not: It can be imposed only hecause the
metric at ® is universal. Note, in particular, that
the metric at i° cannot even be rescaled; it follows?
from conditions on the conformal factor in the defini-
tion of AEFANSI space—times that only such changes
2 — w§ in the conformal factor are allowed for which
w is unity (and 9 at i%, so that the metric at ¥ is
conformally invariant. (Note also that we cannot de-
mand the tangent vector to be unit at points other
than 9 since such a requirement would #ot be con-
formally invariant.) If the metric at i’ were only C'—
rather than C”>%—these would be all the conditions

we could impose, Then “good’” ways of approaching
i® would consist simply of equivalence classes of
curves (satisfying the requirements stated above)
where two curves are regarded as equivalent if they
agree to first order at #', i.e., if they are tangential
there. Since each of these equivalence classes can be
characterized by its tangent vector at ¢, and since
these vectors are required to be unit, the collection
of all “good” ways would naturally acquire the
structure of the unit timelike hyperboloid in the tan-
gent space of ¢°. Thus, using only the C? property

of the metric, the blown-up structure would simply
be this hyperboloid. %

However, the metric is €% at {°. Hence we can
indeed distinguish between two curves which differ
in the second order; not only does each curve carry
a velocity vector at i but, for each choice of a
derivative operator, also an acceleration vector.
What are the possible regularity conditions on the
second order behavior of curves? An obvious choice
is to demand that the curves be geodesics.?? Un-
fortunately, for spacelike curves, the notion of
geodesics is not conformally invariant. One must
therefore select a particular metric in the conformal
class available. The only distinguished metric in this
class is the physical metric gag itself, Unfortunately,
this g, is not even defined at i°, Hence, we must
first formulate the condition at points near %, re-
express it in terms of an unphysical metric which is
well-behaved at ° and then take the limit. Fix a
spacelike curve p(A) in M which is C! at i and C3
elsewhere, Let 1® be the tangent vector field to the
curve, We wish to require that on (M, g,), 7° be
geodesic; 1.e., that 7feAb!=0 where AP=n2v n® is
the acceleratlon of the curve relative to g,. In terms
of the metric g,, (whose restriction to M is Q2g,,),
this condition becomes n[“Ab‘H? -1 [“V”IQ 0, i.e.,
£, (Ab+Q 192Q) = 0 where Ab= n“V 1° is the accelera~
t10n of the curve relative to g, and hab gab

apn"n )"1n,m, is the projection operator in the 3-flat
wh1ch is g,,—orthogonal to 7% We can now take the
limit, The resulting condition is hm_,,ohab(A
+Q-19%Q) = 0. Note that, although A® does depend on
the particular choice of the metric from the confor-
mal class, the condition as a whole is conformally
invariant. Thus, the regularity condition on the
second-order behavior of curves completely deter-
mines the components of the acceleration of the
curve (relative to any g,,, in the conformal class,
which is €>9) at i® which are orthogonal to its tangent.
(lim ;02717 bV”Q depends only on the tangent vector
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to the curve at ¢%.)?® The component along the tangent
vector, on the other hand, is completely uncon-
strained and carries all the interesting information
about the second-order behavior of our curves. We
summarize. A spacelike curve p(A) in (M, £,,), pass-
ing through ° W111 be said to be regular 1f and only

if (i) it is C’! at % and C3 elsewhere; (ii) it is param-
etrized so that p(0) is /% and the tangent vector to the
curve, 14 is unit ef °; and (iii) 1% satisfies
hm.,oﬁ (A%+Q-1¥%Q)=0, These are all the regular-
ity conditions we can impose using only that structure
which is universally present at % The first of these
conditions refers to the differentiable structure at

i’, the second to the metric at 0, and the third, to
the existence of (a family of conformally related)
direction-dependent connections. Respectively, these
conditions demand that regular curves be well-
behaved submanifolds, that they be nicely param-
etrized, and that they be indistinguishable, asymp-
totically, from the geodesics in the physical space—
time. The blowing up of ¢ will now be obtained from
the collection of these regular curves.

Let S denote the collection of equivalence classes
of regular curves where two curves are regarded
as equivalent if they have the same tangent and the
same acceleration at 7%, i,e., if they agree to first
and second order there, A point of S can bhe char-
acterized by the pair (n%, éabn“Ab)—the common
tangent vector and the common tangential accelera~
tion of the regular curves in the equivalence class,
both evaluated at {%—where the value of g,n°A? is
governed by the particular choice of the metric in
the conformal class. ?® Intuitively, each of these
points represents an asymptotically distinct, “good”
way of approaching infinity in spacelike directions.
Thus, S is the blown up 7°.

What structure does this S inherit from its con~
struction? Note, first, that there is a natural pro-
jection mapping 7 from S onto the unit timelike
hyperboloid K in the tangent space of % 7 sends
each equivalence class of regular curves to the
common tangent vector they have at i%. Hence, one
might expect that S can be given the structure of a
fibre bundle, This expectation is indeed correct.
Fix a point on the hyperboloid X and consider the
fibre F over it. Points of this fibre ¥ represents
various equivalence classes of regular curves which
happen to have the same tangent vector at i%. Hence,
each point of F can be labeled by the tangential com-
ponent of the acceleration of the curves in the corre-
sponding equivalence class. Fix a metric g,,. Then,
for any curve p()) with tangent vector field 12, the
tangent1a1 component a of acceleration is given by
&=z, PA | 0= g ™ P 0. Since, by the defini-
tion of equivalence, the value of a is the same for
all curves in any one equivalence class, the fibre
F can be coordinatized by a@. Recall that the tangential
component of the acceleration is completely uncon-
strained, Hence, @ can assume arbitrary real
values. It therefore follows that F is homeomorphic
to the real line. Using these properties, one can
easily endow § with the structure of a fibre bundle.
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How does the above coordinatization of fibres
respond to conformal rescaling? Consider another
(€% metric Z,, 1n the available conformal class. We
must have 2y = w'g,, for some function w on M which
is C0 at ¢° C2 elsewhere and which satisfies wi ;0
=1. Con51der a=g bn"Ab for any given regular curve
with tangent vector n% It is easy to check that a
—a+ [n“V w] 0. Thus, the coordinatization is not con-
formally mvarlant. (Hence, there is no natural vec-
tor space structure on the fibres.) Note, however,
that given any two pomts on the same flbre say pq
and p,, we have, @,—a,=@;—d,. Thus, given any
fibre F, although there is no natural mapping from
F to the reals, there does exist such a mapping from
FxF to the veals: Send (py,p;) to the real number
a1~a2 Furthermore, this mapping is onto and its
kernel is just the diagonal subset of F x F. Hence,
it induces a natural free and transitive?? action of the
additive group of reals on each fibre F. Thus,

(S, R, K) is in fact a principal fibre bundle’! where
the structure group R is just the additive group of
reals,

To summarize, the result of the blowing up of
7’ is a 4-manifold which has the structure of a princi-
pal fibre bundle: The base space is the unit timelike
hyperboloid in the tangent space of ¥, and the struc-
ture group is the additive group of reals. This S will
be called Spi—spatial infinity. From its very con-
struction, S inherits two tensor fields: a covariant,
second rank, symmetric (degenerate) tensor field
T4, the pullback to S of the natural metric on the
hyperboloid X ; and a vertical vector field v¢, the
generator of the natural, one-parameter family of
diffeomorphisms on § induced by its structure
group.3?

Note that conformal rescalings of the (unphysical)
metric induce, in a natural fashxon, certain motlons
on Spi: Since under the rescaling gab gab w gab,
the labelmg of fibres changes viaa —&=4
+(n® v )10, one can obtain a natural action of these
conformal transformations on Spi. (We shall see in
the next section that the resulting transformations on
Spi are precisely the supertranslations at spatial
infinity. ) Since this action leaves each fibre as a
whole invariant—its projection on A vanishes—
effectively, it reshuffles the ‘“second-order” struc-
ture at %, leaving the “first-order” structure un-
touched, This interplay between conformal trans-
formations in the completed space—time and ““sec-
ond-order” transformations at % is a fundamental
aspect of the universal structure at spatial infinity;
we shall refer to it again in Secs. 5 and 6.

0

Finally, we remark that Spi could have been con-
structed via procedures which differ in some re-
spects from the ones used above: There appears to
exist a great deal of freedom in the precise choice
of description of the ‘“second-order structure’”’ at
% i.e,, of fibres of Spi. In particular, we could
have labeled these fibves using the tnduced connec-
tions on C! curves, vather than accelevation.*® The
particular procedure employed above is geared to
bring out the similarity of the construction of Spi
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with that of ¢. Thus, just as each point of ¢ can
be regarded, intuitively, as a ‘“good” way of
approaching infinity in null directions, a point of
Spi can be so regarded in spacelike directions,
Furthermore the resulting structures are also very
similar in the two cases: ¢ and Spi are both fibre
bundles. As a result, the corresponding groups of
asymptotic symmetries also turn out to be similar.
There are, however, some important differences.
For example, the structure of Spi is more rigid
than that of ¢: Spi is endowed with a preferred de-
generate metric and a preferred vertical vector
field, while ¢ has available only a (conformal) class
of such fields. Perhaps the most important differ-
ence is that whereas { serves as a boundary of
space~time, Spi, being itself four dimensional,
cannot.

4. ASYMPTOTIC SYMMETRIES AT SPATIAL
INFINITY

Symmetry groups arise in physics as groups of
transformations which preserve the structure of
interest. What is the structure relevant to the
analysis of the asymptotic behavior of the gravita-
tional field at spatial infinity ? It is just the universal
structure of Spi: The fibre bundle character of S,
the horizontal tensor field %,, and the vertical field
v%, The group of asymptotic symmetries at spatial
infinity is therefore just that subgroup of the diffeo-
morphism group of § which preserves this universal
structure.® In this section, we shall first investi-
gate this (sub-~) group (; in detail and then indicate
how this group will be reduced to the Poincaré
group in Sec, 6.

Consider, then, diffeomorphisms of S which pre-
serve its fibre structure and leave invariant the
fields h, and 9. Let £9 denote the generator of such
a diffeomorphism. Then, £% is a vector field on S
which satisfies, in particular, the following condi-
tions: (i) [ %,,=0 and (ii) / ,0%=0. Note, however,
that the vector field v is vertical and nowhere van-
ishing, Hence, each fibre of S is just an integral
curve of this v%, Therefore, condition (ii) above
already guarantees that the one-parameter family
of diffeomorphisms generated by £¢ is fibre pre-
serving. Thus, conditions (i) and (ii) are not just
necessary but also sufficient to guarantee that (the
one-parameter family of) diffeomorphisms gener-
ated by £% belong to (;. It is obvious that the collec-
tion of all such vector fields has the structure of a
Lie algebra, We shall denote this Lie algebra by

O

Fix an element ¢ of /. ., Since £,£%=0, we can
project £% down to the base space X of § unambigu-
ously. Denote by £2 the projected vector field on
K. Then, it follows that L7 =0 on S if and only if
£¢hyp=0 on K, where hy,—the projection of h,, on
S—1is the natural metric on the hyperboloid K. Thus,
¢%is in [, if and only if (i) £ b,;=0 onK, and (ii)’
Z*=0onsS.

Consider, first, the case when £%in /. is such
that its projection % on A vanishes. Then, the con-
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dition (i)’ above is trivially satisfied. Furthermore,
£a is itself a vertical vector field. Hence there exists
a scalar field f, on S such that £?=f,»%. (Recall that
v? is nowhere vanishing.) Condition (ii)’ is now
satisfied if and only if £, f,=0, i.e., if and only if
fy is the pullback to S of some scalar field f, on K.
Thus, there is a one~to-one correspondence be-
tween (arbitrary) scalar fields on X and elements of
/. whose projection on X vanishes. We shall call
these elements of [, infinitesimal Spi supevivans-
lations. What structure do we have on the collection
[, of these elements? First, there exists a natural
vector space structure. (The correspondence be-
tween £ and f, is vector space structure preserv-
ing.) Consider, next, the Lie bracket. Given any
two elements £% and £'¢ of /, we have [¢,¢’)e
=f,fpvi®=0. Thus, /; is closed under the Lie
bracket operation; in fact, LS is an Abelian sub
Lie-algebra of /; . Consider, finally, the Lie
bracket [y, £ where p% isin /. and ¢%in /.. Then,
we have [u, £1°= [y, fv]a=(/  f)ve. Furthermore,

L )=t ,f,=0. Thus, the Lie bracket [u, £1o
is itself an infinitesimal Spi supertranslation.
Therefore, it follows that L,‘ is not only an Abelian
Lie subalgebra of L; , but an ideal!

Consider the quotient Lg /LJ, . By its construction,
L(; /[; has the structure of a Lie algebra, Each
element of /. // . is an equivalence class of infini-
tesimal Spi symmetries. Denote by {u¢} the equiva-
lence class to which u% in /, belongs, Then, {us}
={u’9} if and only if '@ —~p is an infinitesimal Spi
supertranslation, and therefore, in particular, a
vertical vector field in S. Hence, it follows that
all vector fields belonging to the same equivalence
class {ud} give rise to the same vector field % on X
when projected. That is, every element of /. //
has an unambiguous projection. Furthermore, if
{p2} is a nonzero element of / ; /L, then the pro-
jected vector field £2 is also nonzero. What condi-
tions does the projection £¢ satisfy? It just satisfies
the condition (ii)’ above: 7 ,h ;=0 on K. Thus, the
projection map provides us with a natural, onto,
linear mapping from the space / ; //  to the space
of Killing fields on (K, h,,) with trivial kernel. Hence,
as vector spaces the two are isomorphic. Further-
more, using the fact that [5 is Abelian, it is easy
to check that the isomorphism also preserves the
Lie algebra structure. Recall, however, that the
Lie algebra of Killing vector fields on a unit hyper-
boloid is isomorphic to the Lie algebra / ; of the
Lorentz group L. Thus, /; /[ is the Lorentz Lie
algebra.

We summarize. The Lie algebra /. has an in-
finite-dimensional Abelian (Lie) ideal /. and the
quotient /. // ; is just the Lorentz Lie algebra. This
situation is quite analogous to that in the null re-
gime: The BMS Lie algebra has exactly the same
structure. The only difference in the two cases is
the “size” of the supertranslation ideal: Whereas
Spi supertranslations are in one-to-one correspon-
dence with functions on the 3-manifold X, BMS
supertranslations correspond to functions on the 2-
sphere of generators of ¢,
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The analogy goes even deeper. Consider the
functions f(A on/< of the type f(k)= k,n® where k, is
any covector at i’ and 7¢ is the position vector of
pomts on the hyperboloid X, in the tangent space of

. Next, consider infinitesimal supertranslations
of the type f(k)v? on S, They form a four-dimensional
Abelian Lie algebra. Denote it by /,. We claim that
[, is in fact a (Lie) ideal of / : Given any element
paof /., it is easy to verify that [u, f(E)v e
={f ,fB)h* is again in / . . Furthermore, it is easy
to show that every Killing field in the physical
space—time gives rise to a unique element of L, ,
and in the case of Minkowski space—time, elements
of /. which thus correspond to space~time transla-
tions are precisely the elements of / ; .2% Hence, we
shall call elements of L, infinitesimal Spi~transla-
tions. The existence of this four-dimensional ideal
is yet another facet of the similarity between the Lie
algebra /. and the BMS Lie algebra.

We now summarize the implications of the above
analysis of infinitesimal transformations on finite
ones, i.e., on elements of (. The group(; of asymp-
totic symmetries has an infinite-dimensional Abelian
normal subgroup—the subgroup § of Spi super-
translations. (The vector space of generators of
these supertranslations is raturally isomorphic to
that of functions on the hyperholoid X.) The quotient
of g by this subgroup is just the Lorentz group: g
is the semidirect product of the Spi supertranslation
group and the Lorentz group. Finally, ; admits a
preferred four-dimensional normal subgroup—the
subgroup / of Spi translations. Thus, in its struc-
ture, g is very analogous to the BMS group, %5

We can now discuss the relation between conformal
transformations on the completed space—time and
Spi supertranslations, mentioned in Sec 3. Fix a
conformal transformation g,,~ gab w?8,,. Then
wl,;0=1 and w must be 0 at ¢ and C? elsewhere
Recall that, given a metric g, which is C? at i,
each point of Spi can be labeled by the acceleratxon
a of the correspondmg (equlvalence class of) curves
at #%, Since under ¢ C Son” ~ By =W gab we have a—~@
=a+ (n“V w)1;0=a+f (where f= (7*V,w) | ;0 is a smooth
function on the hyperboloid X), the actlon of the fixed
conformal transformation on Sp1 is just the motion
along each fibre F a parameter distance given by the
value of f at the point on X defined (via projection) by
F. This motion is clearly the supertranslation de-
fined by the function / on K. Thus, there is a natural
homomorphism from the group of conformal transfor-
mations on the unphysical space—time onto the super-
translation group. [{The kernel of this homomorphism
is, of course, the subgroup of conformal trans-
formations Z,, — W&, for which G2V w)|;0=0.] What
are the conformal rescalings corresponding to Spi
translations? Since translations arise from functions
(on K) of the type f= w,n%, it follows that the corre-
sponding conformal rescalings g, — w’g,, are pre-
cisely those for which w is Cl—rather than C>'—at
i% (Thus, if the rescaled metric at i were C!
rather than C*?, one could have eliminated the “super-
translation freedom’’ entirely and obtained, as one’s
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group of asymptotic symmetries at spatial infinity,
the Poincaré group instead of the infinite-dimension~
al group(; . Note, however, that the presence of a
ct metrlc would 1mp1y2° vanishing of the ADM 4-
momentum, ) It is curious that the differentiability
requirements at i? should govern so many aspects of
the asymptotic behavior of the gravitational field.

Finally, consider the issue of the selection of a
preferred Poincaré subgroup of g . Fix in S any 4~
parameter family of cross sections which is left
invariant by all Spi translations. Consider now the
subgroup of (; which leaves this family invariant.
Since the translation subgroup of (; is itself four-
dimensional, it follows that the only supertranslations
which will leave this family invariant are trans-
lations. As a result, the required subgroup of (; will
be a Poincaré group. In Sec. 6 we shall see that for
the class of AEFANSI space—times satisfying an
additional condition on the asymptotic behavior of the
Weyl tensor, one can indeed select a translation in-
variant 4-parameter family of cross sections of S
in a canonical way. Thus, for this class of ALFANSI
space—times, the group of asymptotic symmetries
at spatial infinity is just the Poincaré group.

1. PHYSICAL FIELDS AT SPATIAL INFINITY
5. ASYMPTOTIC FIELD EQUATIONS

In this section, we examine the asymptotic be-
havior of physical fields (at spatial infinity) and
obtain the asymptotic field equations. Apart from its
intrinsic interest, this discussion will prove to he
crucial for definitions of conserved quantities in the
next section,

The present section is divided into four parts. In
the first, we consider the scalar field, in the second,
the electromagnetic field, in the third, the gravita-
tional field and, in the fourth, certain potentials for
the gravitational field. The main ideas in the analy-
sis are the same for all three fields, We begin by
considering fields which, via conditions (iii.a) and
(iv)’ in the definition of asymptotic flatness (Sec. 2)
admit regular’! direction-dependent limits at 40,
Since the limits depend only on “the direction of
approach” to %, they induce (smooth) tensor fields
on the hyperboloid K of wnit spacelike vectors in the
tangent space at {%. Information about the (highest
order) asymptotic behavior of fields is now coded in
the corresponding tensor fields on X, Finally, we
consider the equations satisfied by the various physi-
cal fields on the completed space—time, and, by
taking limits of these equations, obtain the asymp-
totic field equations for fields on K.

A. Scalar fields

The analysis of the asymptotic properties of
zero rest-mass scalar fields is, by itself, not of
direct physical interest. The main purpose of this
subsection is rather to introduce certain mathema-
tical techniques which will be used extensively for
electromagnetic and gravitational fields later in this
section,
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Denote by ¢ a scalar field on the physical space—
time (M, g ;) satisfying V°V, ¢ — -R¢> 0 where V and
R are respectively the der1vat1ve operator and the
scalar curyature defined by g,,. Then p="1¢
satisfiest VoV, ¢ —1R$ =0 on (M, 2,,). Condition (iv)’
in the def1n1t1on of asymptotic flatness requires that
we restrict ourselves to fields for which 91/2¢ ad-
mits a regular direction-dependent limit at i%. Set
¢ () =1lim _;0Q!/?¢ where 7° denotes the (unit)
tangent to the curve of approach at 0 along which the
limit is taken. Then, ¢ (n) induces a scalar field on
K which we shall denote by ¢. It is this ¢ which
represents the ‘“asymptotic scalar field’”’ corre-
sponding to ¢. Regularity conditions on the limit re-
quire that, onK, ¢ be a smooth function and that
the derivatives B+ ++ 8, ® () of ¢ (n) with respect
to the argument 77“ and fhe derivatives of ¢> on
(M, g,,) be related via

=1; 1725 V... (Ql/2G /22
9 aancp(n) lltrgx(ﬂ Vﬂ1) « Van)Q o.

(1)

Furthermore, the 8, derivative turns out to be re-
lated to the der1vat1ve operator D, defined on the
hyperboloid X by its intrinsic metr1c h,, as follows:
Dy, ++ Dy ¢ is the field induced on K by the dlrec—
tion dependent tensor hg %1« -hy "nds;+ - 8,0 (1

(For details, see Appenélx A)) In essence, the regu-
larlty conditions demand that, as one approaches 9,
Q1/2¢ have (finite) discontinuities only in “radial
directions, > i.e., that it be smooth in its “angular
behavior, »

ag

We can now obtain the asymptotic field equations
satisfied by ¢ onX. Since

@a@a({; = Q8/2Ql/2aql/29 Q1/2§
- 1 (Fov,2)(@1/2) - 301/2(9,2) (Fed)}
(2)

holds, since lim ., ov Q172 is n,, the unit tangent

at z° to the curve of approach and since?l
8,[T™* ... (m1=0 for any regular direction-de-~

pendent tensor T™**n_ . (1), we have the identity

D*D,p — ¢ = 1ir51(vava¢). (3)

We now use the field equation V"V 0 —gﬁcz) 0 for ¢.
Because the metric g, is C? at %, Q!/2R e admits
a regular direction-dependent lim1t there?! and
hence lim ,;0QR=0. Equation (3) therefore reduces
to

D*D,¢ — ¢ =0. 4)

Thus, the (leading order) asymptotic behavior of
zero-rest-mass scalar fields in the physical space—
time is described by scalar fields ¢ on the hyper-
boloid K subject to Eq. (4).

B. Electromagnetic fields

Fix, in the physical space—time, a Maxwell field

F,, whose sources are confined to some world tube. 3

Outside this world tube, we have \'7 Fab=0 and
V F®=0. Set £, =F,. Then, on (M, 2w)y Py
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satisfies V,F%=0 and V,*F®=0, As before, condi-
tion (iv)’ in the definition of asymptotic flatness gives
rise to a restriction on allowable fields: We shall
consider only those fields for which F(n)

= 1irgl,ioQFab is a regular direction-dependent tensor
at .

As in the case of the scalar field, we first intro-
duce the field on the hyperboloid X which is to repre-
sent the asymptotic electromagnetic field corre-
sponding to F . We can, of course, choose for this
purpose the second-rank, skew tensor field induced
at each point on the hyperholoid by F,, (). However,
since, in general, [F,,(n)]n® fails to vanish, the
induced tensor field will fail to have “its indices
tangential to the hyperboloid, »” i.e., will fail to be a
tensor field on X. Hence, we proceed as follows.
Set E, (n)= (F,, n))n and B, (n) = (*F, (m)n°

bcd(FCd mn® where €4, is the alternating tensor
at z‘f defined by the (universal) metric g,
(=1lim ., ogab) there. These fields, E,(n) and B,(»)
(being anmhllated when contracted w1th n%) do induce
vector fields E, and B, on K. Since F,,(n) can be
reconstructed from E (n) and B,(n) [F, (1)
= 2(E [, (m)n, 1+ €45ca°BHM)], it is clear that the pair
(E,, B,) on K does contain all the information carried
by Fab( ). (It follows from regularity of the direc-
tion-dependent limit of Q1/2F ; that E, and B, are
smooth vector fields on X.) One mlght regard E,
as the “asymptotic electric field with respect to
the hyperboloid X and B, as the “asymptotic mag-
netic field with respect to X.” (Note, however, that
K is timelike. Hence, this decomposition into
“electric and magnetic parts”’—although analogous
to—1is not quite the same as the usual decomposi-
tion relative to a given observer.)

We are now ready to obtain asymptotic field
equations. Consider, first, the equation VaF‘”’=0.
Since

0, 0= 3/2Ql/2% (QF @) - 20 b 01/2) (5)

holds, we have, after taking the limit (and using
lim ;v ,Q1/2=19,),

8,F(n) + 2E%(n) = 0. (6)

Contracting this equation with n? and noting that the
field induced by the direction-dependent tensor

8,1, on K is precisely the intrinsic metric hy, of X,
we obtain the first asymptotic equation

D¥E, =0, (7a)

Projecting (6) into the hyperboloid, on the other
hand, and using the expression for F, (1) in terms of
E, and B,, we obtain

D\,B,,=0. (8a)

Equations (7a) and (8a) are, together, completely
equivalent to lim . 093/2V‘1F =0, and hence, can be
regarded as the asymptotlc fleld equation corre-
sponding to V®F,, =0, The second field equation,

Ve xF =0, yields, similarly,

D,B%=0 (7h)
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and
Dy Ey=0. (8b)

Thus, the (first~order) asymptotic behavior of the
electromagnetic field is described completely by two
divergence-free and curl-free vector fields E, and B
on the hyperboloid X.37 We shall see in the next
section that total electric and magnetic charge (in
the physical space—time) can be evaluated using
these asymptotic fields.

a

C. Gravitational fields ds

For simplicity, we shall restrict our detailed
discussion to the case in which the gravitational field
is source-free near infinity and only comment brief-
ly on the modifications required by the presence of
sources, This procedure is appropriate especially
since the presence of physically interesting sources
at infinity—the zero rest-mass fields satisfying con-
dition (iv)’ in the definition of asymptotic flatness!—
affects only certain intermediate steps in the analy-
sis, leaving final equations completely unaffected.

Because the Ricci tensor R of the physical metric
Z. vanishes near infinity by assumption, the gravita-
tional field there is completely described by the Weyl
tensor Cu,y. As shown in Appendix, the C? differ-
entiability of &, guarantees that C,, 2 (= C,,.9 is such
that @1/2C,,.? admits a regular direction-dependent
limit C,,.4(n) at i% This limit describes the asymp-
totic gravitational field to first order.

Our task now is to obtain smooth tensor fields on
the hyperboloid X induced by C,.q(n). To achieve
this goal, we essentially repeat the procedure used
in the electromagnetic case. Set E ,(n)=1im ;0
X CompnMn™" and By, (n) = lim ;0 *C_,, ()n™n"
= €4mpCl %, (MN™", where €,,., is again the alternating
tensor at ¢* comparable with the metric g,, there and
where indices are raised and lowered using g,,. Note
that contractions of both E (1) and B, (n) with n
vanish. Hence, E_ (1) and B, (n) induce tensor fields
on the hyperboloid which we denote by E , and B,
respectively. It follows directly from their defini-
tion that E,, and B, are symmetric and trace-free.
Since Ceq(n) can be expressed in terms of Eg,(n)
and B,,(n), the pair (E,, B,) on K may now be re-
garded as the asymptotic gravitational field. We
shall refer to E ; as the “electric part of the asymp-
totic curvature relative to X» and B, as the “mag-
netic part.”’

Finally, we obtain the asymptotic field equations
for the gravitational field. Since in the physical
space—time, R, =0 near infinity, the only equation
of interest there is the Bianchi identity V,Cpy.14.=0
on the Weyl tensor. In terms of the rescaled metric
Za=2%,, this equation becomes

VimCaproa= U @ ot mCap1paV?? + ZatmCan1cp VD)
Using the identity ®
G inCaptoa= R0, 012 10g = 3 V1021 ) Copa]
(10)
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in Eq. (9), multiplying by @, and taking the limit of
the resulting equation, one obtains

811 Cap1caM = BetmCapipalMn?

+ 2801 mCap1cp MM + N mCopirca)- (11)
11

Equation (11) is the asymptotic field equation for
C,pcq(m. To obtain the required equations on E,,
and By, we project Eq. (12) into the hyperboloid A
and contract with n in all possible ways, The result
is

DE, ;=0 and D(,B,;.=0. (12)

Equation (12) is completely equivalent to (11). [Note
that equations on E ;, and B,, are analogous to the
“curl equations’” (8) in the electromagnetic case,
Why are there no additional ‘“divergence equations’’
analogous to (7) ? It is simply because these are
already contained in (12): Contracting over ¢ and ¢
in (12) and using the fact that E;, and B,, are trace-
free, we obtain D°E ;=0 and D°B,,=0. |

To summarize, the asymptotic behavior of the
gravitational field is described completely (to first
order) by two second rank, symmetric, trace-free
tensor fields on . The asymptotic field equations—
obtained by taking limits of the Bianchi identity~—are
a pair of linear differential equations on these fields.
Although in arriving at this description we have
assumed that the gravitational field is source-free
near infinity, the final description itself continues
to be valid in the presence of sources provided the
stress-energy T, in (M, g,,) remains finite—more
precisely, admits a regular direction-dependent
limit—as one approaches i in M. [In this case,
only Eq, (9) is modified; the rest of the equations
remain unaltered.] The stress-energy of the zero
rest-mass fields permitted by our definition of
asymptotic flatness does satisfy this condition.
Thus, the presence of these fields leaves no direct
imprint on the first order behavior of the asymptotic
gravitational field: In the asymptotic description,
these fields simply decouple from the gravitational
field.

D. Gravitational potentials

We now wish to display certain natural potentials
for asymptotic gravitational fields E,, and B,,. The
existence of these potentials will play an important
role in the discussion of conserved quantities. The
key idea is to use the consequence

¢ 0, m=%,3

m~abe

(13)

alc

of the Bianchi identity on R, where §,,=R,,
144 : X :

—2R%,,. The fields induced on the hyperboloid X

by the limiting behavior of §ab will provide the

required potentials.

Since Q!/2R ., admits a regular direction-depen-
dent limit at %,2! so does Q!/2S,,. Set 8, (n)
=1im ,;0Q!/28,,. (This limit will turn out not to be
conformally invariant. Hence, we retain the ‘“hat”
even after the limit is taken. All other limits con-
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sidered so far are conformally invariant; we there-
fore dropped the “hats” after the limit was taken. )
How can we represent this 8, (n) in terms of smooth
fields on the hyperboloid A ? Set E(n)= (8 ,(n)nn?,
Q,(n) =h, )8, (), and U,y(n) =h(n)hyn(n)8,,, (n).
Clearly, 8,(;) can be reconstructed from the triplet
(E(),Q,m), Uy, (). Furthermore, contraction with
n® annihilates both Q,(n) and U, (n). Hence, each
element of the triplet induces a smooth figld on the
hyperboloid K. Denote these fields by E, @,, and

U, respectively.

Next, we wish to show that these fields serve as
natural potentials for E , and B,,. Note first that,
using Eq. (9), Eq. (13) simplifies to

C oo V™2
= Q0800 =21/ 29,Q1/2 8,10 - 21284V, 012,
(14)
Taking the limit of this equation, one obtains
2C 3pemIN™ = 88,10 1) + 18,16 = 0. (15)

Next, contracting with 7° and using the expression fox
the D derivative on X in terms of the 8 derivative,
one has

Eab= - %(Daéb+ﬁhab)' (16)

Finally, using the asymptotic field Eq. (12) on E,,,
it follows that §,=D,E, so that

E,=- i(D,D,E+PFh,). (7)

Thus, the scalar field E on K serves as a potential
for the electric part of the asymptotic curvature,
Similarly, contracting (15) with €%%%%) one obtains
the potential B,

A
— 1
Bab - Z€"memKna,

where ﬁm= ﬁm - I:th and where €,
alternating tensor field on (K, hy,).

(18)
is the natural

While E and ﬁab are “natural” potentials for E ,
and B,,—they are obtained by taking the limit of a
space—time field, which, in (M, g,) serves as a
potential for Cgq4 [Eq. (14)]1—B,, also admits a
scalar potential which has no simple interpretation
in terms of space~—time fields. This new potential
arises from the following fact about fields on hyper-
boloids: Given any symmetric tensov field T, on
K with D, Ty,,=0, there exists a scalar field T on
K satisfying T,=D,D,T+Th,. Thus, because of the
field Eq. (12) on B,,, we know that there also exist
a scalar potential B for B,, with

B,,=D,D,B+Bh,, (19)

Finally, let us analyze the behavior of £ and ﬁab
under conformal rescalings of the unphysical metric.
Let g,;, be any other metric in the conformal class
under consideration. Then gy, =w?g,,, where w is
C>% at i (C? on K) with wi;o=1. Set a(n)
= (lim .;0V,w)n® and denote by & the scalar field in-
duced on K by (), Then, it is easy to check that

E'=E and K=K, - (D,D,@ +ah,). (20)

Thus, E is conformally invariant while f{ab is not,
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(From now on we can drop the “hats” over E.) Note,
however, that K, is invariant under certain con-
formal rescalings: If D,D,a +ah =0, K,,=K,. In
Sec. 5 we saw that there is a homomorphism from
the group of conformal rescalings onto the group of
supertranslations on Spi. It is easy to check that
conformal rescalings which are in the kernel of

this homomorphism are precisely those for which
the function @ on X vanishes. Hence, the supertrans-
lation group (on Spi) has a natural action on the
potential ﬁab. What are the supertranslations corre-
sponding to @’s which satisfy DD, +ah,,=0? These
are precisely the translations! Thus, the potential
K,, is invariant under translations but not under any
other supertranslations. We shall use this fact in
the next section to single out a preferred Poincaré
subgroup of the group of asymptotic symmetries.

6. CONSERVED QUANTITIES

This section is divided into two parts. In the first,
we consider general asymptotically flat space—times
(in the sense of Sec. 2) and introduce definitions of
total (electric and magnetic) charge and total 4-mo-
mentum in terms of asymptotic fields. In the second,
we introduce an additional requirement on the asymp-
totic behavior of the Weyl tensor and, for the {some-
what) restricted class asymptotically flat space—
times, obtain a definition of angular momentum.
Since information about dynamics of the system
cannot register itself at spatial infinity, all these
quantities—unlike, e.g., the Bondi 4-momentum on
J—are “absolutely conserved;”’ they are associated
with the space—~time as a whole.

A. Charge and 4-momentum

Recall that, asymptotically, the gravitational field
completely decouples from the (zero rest-mass)
sources: Each field satisfies a linear differential
equation which makes no reference at all to other
fields. This decoupling simplifies the analysis of
conserved quantities considerably. In particular,
in the definition of electric and magnetic charges,
we need to consider only the asymptotic electromag-
netic field, and, in the definitions of energy—momen-
tum and angular momentum, only the gravitational
field.

Fix an asymptotically flat space—time endowed
with an electromagnetic field F,, and consider the
asymptotic fields E; and B, induced by this F, on
K. Since D?E,=0 and D*B,=0 on/(, it follows that
the right-hand sides of

QE = ./ﬂ SZ E“EabcdSb‘
and
QB = /SZ BaEGbcdSbc

are independent of the particular choice of the 2-
sphere cross section 32 of K used in their evalua-
tion. 38 @ & 1s to be interpreted as the total electric
charge and Qp, the total magnetic charge, of the
isolated system under consideration. One can regard
the 2~sphere cross sections of K as being “the limits

(21)

(22)
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of sequences of 2-spheres in the physical space—
time as their radii tend to infinity.” Since @z and

Qp are independent of the cross section,®? they can
be considered as “conserved guantities.” (This
definition of charge may seem a bit surprising since
E, is not the “limiting’’ electric field relative to

any observer, but rather, relative to the (spacelike
normals to the) hyperboloid . Recall, however, that
in the physical space—time, the total charge is de-
fined as the infegral f *F,,dS% over any 2-sphere
surrounding the charge, i.e., as the average of the
“t — v component” of ¥, over all angles. Since
E,n)=F,nn’ is the “radial component” of the
asymptotic Maxwell field, the integral in (21) is
precisely the “average of the ¢ — » component” of

the asymptotic Maxwell field F,(n). Similar remarks
hold for the magnetic charge.)

Next, we wish to introduce the total 4-momentum
(including the contribution of the gravitational field)
of the given isolated system. For this, we consider
the asymptotic gravitational field, i.e., the pair
(E,, B,,) onK. Since, in special relativity, the 4-
momentum of a system is intimately intertwined
with the group of translations, one might expect
the situation to be similar in the present case. This
expectation is correct: The 4~momentum emerges
as a linear mapping from the space of translations to
the reals, Thus, the basic definition of 4-momentum
is tied with asymptotic symmetries on Spi. How-~
ever, we will also be able to give an alternate de-
finition which refers only to the tangent space at
i%, thereby avoiding technicalities associated with
Spi.

Recall, first, that there is a natural vector space
preserving isomorphism hetween the space of
functions on X and supertranslations on Spi, and
that functions on K which thus correspond to trans-
lations are of the type (f(k))(n) =k n° for some vector
k, in the tangent space of i’. Consider the linear
mapping

£(k) —3 | ’Sz Eob(D,£(k))€ 1y d S (23a)

from the space of translations to the reals, where

& is a Z-sphere cross section of the hyperboloid.
Using the definition of f(&), it follows that D,D,f(k)
=—~f(k)h,,. Thus, D?f(2) is a conformal Killing field
on K. Since E_, is both trace and divergence free,

it follows that the integral in Eq. (22) is independent
of the choice of the cross section. Thus, we have
obtained a conserved quantity which takes values in
the dual of the vector space of translations. This

is the total 4-momentum. It is not difficult to show
that this conserved quantity is essentially the same
as the ADM 4-momentum. % (That is, the two agree
when both are defined.) In Appendix B, it is shown
that the present definition yields the expected answer
for Kerr space—times. Finally, note that one cannot
obtain a conserved quantity by replacing translations
in Eq. (23) by arbitrary supertransiations: Unlike at
null infinity, 4° supermomenta do not exist in the
spatial regime.

Fquation (23) suggests an alternate interpretation
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of 4-momentum; we may regard it as a covector

at ¢% This interpretation arises because the vector
field D*f(k) on K is precisely the same as the one
obtained by projecting the constant vector field »%
into the hyperboloid: DPf(k) =h 2k%= k> — (nk, nP.
Hence, the covector P, defined by

Pie=3 2 Egk)et, asm (23b)

at ¢ may itself be regarded as 4-momentum. While
in this interpretation 4-momentum is not directly
linked with translations—as it normally is in
physics—there is, nonetheless, the advantage that
it is now more directly ‘“attached” to the (completed)
space—time manifold.

From a purely mathematical viewpoint, the key
step in obtaining a conserved quantity is the con-
struction of a curl-free 2-form (on X) using asymp-
totic fields: The integral of such a form on any 2-
sphere cross section of K is automatically indepen-
dent of the cross section. Since E is trace and
divergence free, the 2-form E ,£%%, is clearly
curl free if £% is a conformal Killing field on the
hyperboloid. We have already used four conformal
Killing fields to obtain the 4~momentum. There stiil
remain the six Killing fields on A.%! What are the
corresponding conserved quantities ? It turns out
that they vanish identically: If £% is a Killing field on
K, the 2-form Ea,,gbeamn is exact; using the expression
Jor E, in tevins of its potential E, one can easily
express this 2-form as a curl of a 1-form. Thus, us-
ing Killing fields in place of D?f(k) in Eq. (23a) one
does not obtain any nontrivial conserved quantities.

Recall that the magnetic part B,, of the asymptotic
gravitational field satisfies the same field equation
as the electric part E ;. Hence, it would appear that,
using B,, in place of E , in Egs. (23}, one would ob-
tain another conserved quantity, the ‘“magnetic”’
analog of the 4~-momentum, or, the “angular momen-
tum monopole-moment.” IF'rom physical considera-
tions, one would hope that this quantity should vanish.
This hope is indeed borne out: Since B, admits a
{tensor) potential R, with By, =~ 4€,,. D"K",, the 2-
form B®D,f(k)e,,. is exact and hence its integral on
2-sphere cross sections vanishes identically. (From
a mathematical viewpoint this result may seem sur-
prising since the algebraic symmetries and field
equations for E , and B, are identical, Note, how-
ever, that the “symmetry” between E , and B, is
broken via the introduction of potentials: Whereas
B,, admits a fensov potential K ,, with €™ B,
=1D!mRn), | B, does not. This difference can be
traced back to Eg. (13) which relates the divergence
of the Weyl tensor with the derivative of the Ricci
tensor; the dual of the Weyl tensor is not related to
the Ricci tensor in an analogous manner. )

Finally, one might try to construct conserved
quantities using B,;, and Killing fields on K. However,
they are all zero for the same reason that analogous
quantities involving E_ are zero: B, also admits a
scalar potential B with B,,=D,D,B+Bh,, [Eq. (19)}.

To summarize, a simple analysis of asymptotic
fields yields only three nontrivial conserved quan-
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tities: The electric charge, the magnetic charge,
and the total 4-momentum. The first two of these
are scalars while the last one takes values either in
the vector space dual to the space of translations
or in the cotangent space at i°,

B. Angular momentum

To obtain a satisfactory definition of angular mo-
mentum, we must first overcome two apparently
distinct obstacles.

The first of these is related to the general notion
of angular momentum itself. Recall that, in special
relativity, the notion of angular momentum is closely
related with the presence of Lorentz subgroups of
the Poincaré group: It arises as a linear mapping
from the Lorentz Lie algebras to the reals. Since
(the connected component of the identity of) the
Poincaré group admits a four-parameter family of
Lorentz subgroups and since none of these subgroups
is preferred over any other, angular momentum is
forced to be “origin dependent;’ the structure of the
Lie algebra of the Poincaré group then gives rise
to the familiar transformation property under the
action of translations. In the transition from the
Minkowski space to asymptotically flat space—times,
the Poincaré group has been replaced by the infinite
dimensional group 9 Consequently, the symmetry
group now admits ““as many” Lorentz subgroups as
there are supertranslations, rather than just a four-
parameter family of them. If we were to consider a
linear mapping from each of the corresponding
Lorentz Lie algebras to the reals and obtain a con-
served quantity, this quantity would have very little
resemblance to one’s intuitive notion of angular
momentum: It would be defined relative to an “ori-
gin”’ lying in an infinite dimensional space! Thus,
to obtain a definition which respects one’s intuition
about angular momentum, one must first suitably
restrict the supertranslation freedom: We must in-
troduce some additional structure at spatial infinity
which can reduce the infinite dimensional group of
asymptotic symmetries to the Poincaré group.

The second difficulty is that, as examples show, 4
none of the asymptotic fields (and potentials) intro-
duced so far carries information about angular mo-
mentum. Intuitively, one might expect angular mo-
mentum to arise from 2-sphere integrals involving
the “magnetic” part of the asymptotic curvature.
The field B,, is, however, quite unsuitable for this
purpose: Both E , and B,, contain information only
about the ““1/73 part” of the asymptotic curvature
and while (from examples) one expects the 4-mo-
mentum to appear at this order—as it did—one does
not expect the angular momentum to do so. (Indeed,
as we saw, all the conserved quantities that one can
easily construct from By, vanish identically.)
Therefore, before we can hope to define angular
momentum, we need to introduce and analyze a new
asymptotic field which can capture the “1/7* con-
tribution” to the (magnetic part of the) asymptotic
curvature.

It turns out that both these ohstacles can be over-
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come at the same stroke. Impose, on the asymptotic
behavior of the Weyl tensor, the following conditions,

By, (1) = UmQ1/? €, (212 (V7 1) =0, (24)
-

and, that the “next order” contribution to the mag-
netic part be asymptotically well behaved, i.e.,
that

B —111%1 *C
be a regular direction-dependent tensor at
[Note that, Bab is also the limit of the “rad1a1” de-
rivative, (vPszW)v (§172 %8, (FmQ1/2)(VnQ1/2) of the
field whose limit by Eq. (24a) must vanish, We
retain the ‘“hat” on 6';,, because, as we shall see, it
fails to be conformally invariant.] It turns out that
the vanishing of B,, introduces additional structure
at infinity, thereby eliminating the “supertransla-
tion freedom, ”” while the existence of 8, leads to
the expression for angular momentum. In effect,
the additional conditions just demand that, in the
physical space—time, the ‘““magnetic” part of the
Weyl tensor should fall off one order faster than the
“electric’” part. These conditions are satisfied in
Kerr space—times and, although no general result
has been proven, there do exist heuristic arguments
which suggests that they would be satisfied for a
wide class of isolated systems. We now introduce
the expression for tofal angular momentum (includ-
ing the contribution of the gravitational field) of iso~
lated systems whose asymptotic gravitational field
satisfies this condition.

o (VR1/2) (Vn021/2) (24b)

It is convenient to proceed in two steps. First,
we shall introduce angular momentum as a set of
skew tensors at %, with appropriate transformation
properties, and then we shall present its more accu-
rate description in terms of the structure of Spi and
of the groupg of asymptotic symmetries.

We begin by eliminating the supertranslation
freedom using condition (24a). Recall, first, that
the supertranslation freedom is essentially the same
as the conformal freedom in the unphysical metric:
A rescaling by a function which is C*? at :° corre-
sponds to a supertranslation; while one by a function
which is C! at #%, to a translation. Hence, the elimin~
ation of supertranslations other than translations can
be achieved simply by first singling out, from the
conformal class of all metrics which are C>° at i,

a preferred subclass of metrics whose »elative con-
formal factor is C! at /%, and then demanding that
this subclass be left invariant by (restricted) asymp-
totic symmetries. The idea now is to use (24a) to
select the required preferred subclass Since B,
vanishes, it follows that its potential Kab satisfies
D[aKb]c—O Furthermore, bi is symmetric. Hence
by a result quoted in Sec. 5), there exists a scalar
field K on the hyperboloid X such that R ,=D,D,K
+Kh . Hence, using the transformation property
[Eq. (20)] of R, under conformal rescalings it
follows that one can always choose a conformal frame
in which K ,=0, and, that the conformal factor re-
lating any two such frames must be C! at &%, Thus,
when B, =0, the condition Ka,,—o selects out a pre-
ferred subclass of conformally related metrics with
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the desired property. Finally, it is clear from the
above discussion that the only supertranslations
which will leave this subclass invariant are
translations.

We are now ready to define angular momentum.
Using the definition of Ba,,( ), and the vanishing of
B,;, one obtains,

Baﬁab(n) =} *Cambn(n)n’”ﬁa"(n), (25)

where Ko(n) = F(n) - E(n)h°” is the direction-depen-
dent field at #° which induces on the hyperboloid K,

the tensor potential Ko” for B*", Because we have
restricted ourselves to conformal frames (g,,’s) in
which Kab 0, we have, onK,

D°f,,= 0,

where, as per our usual notation, Bab is the tensor
field on K, induced by 8, at %, Henee given any

(26)

skew tensor F in the tangent space of ¢, the right-
hand side of
MOOF =] {’Szﬁabg,,emds'"n (27)

is independent of the 2-sphere cross section of X,
where £¢ is the (Killing) field induced on /< by the
direction~dependent vector e‘”’c"F by at %, Hence
Eq. (27) defines a skew tensor M”b at ° Under a
conformal rescaling g,,— &%, = w’g,, where wis C!
at ¢ (i.e., under a rescaling which leaves our pre-

ferred subclass of conformal frames invariant), one
has, on K,
By~ B11= B+ 2€ i oEFy D™, (28)

That is, under restricted conformal transforma-
tions (which correspond to translations rather than
arbitrary supertranslations) the magnetic part é'ab
of asymptotic curvature picks up an electric part.
Finally, using Eqs, (27) and (28), it follows that,

]f/[ab_, Mlab_:}\}ab_;_ 2P[“wb], (29)
where w,=(V,w)] ;0 and where P° is the 4-momentum
defined via Eq. (23). Since the natural isomorphism
between the translation subgroup of the asymptotic
symmetry group g and the tangent space at ¢’ sends
the translatlon correspondmg to the conformal re-
scaling £, — &= W'E,; to the vector P at 0, (29) i
the usual transformation law for angular momentum
under translations. The 4-parameter family of skew
tensors 1R? at 1% obtained via Eq, (27) in conformal
frames selected by the condition K ,=0 represents
the angular momentum of the isolated system under
consideration.

In terms of Spi, the situation may be summarized
as follows. Given any metric §ab in the conformal
class available, one can coordinatize the fibres of
Spi in a canonical way using the tangential component
a of the acceleration of curves (representing points of
Spi), at i, Fix a real number » and denote by
C,(&,s) the cross section of Spi defined by a=7.

(Thus C,isa mappmg from the conformal class of
metrics (C>0 at 1) onto the space of smooth cross
sections of Spi. ] Consider the subclass of metrics
&, for which Kab 0. It is easy to check that the
image, under the mapping C, of this subclass is a
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4-parameter family f, of cross sections which is

left invariant by translations, but by no other super-
translations. In view of the remark made at the end
of Sec. 4, it follows that, when this family is in-
cluded in the universal structure on Spi, the asymp-
totic symmetry group reduces to the Poincaré group.
Thus, the condition K ;=0 enables us to select a
preferred Poincaré subgroup of g . Finally, note that
this Poincaré subgroup is independent of the initial
choice of the real number »: Since the structure group
of Spi is in the center of (;, the action on Spi of the
Poincaré subgroup selected above leaves invariant
the family f, of preferred cross sections jfor each
real number v,

How much “freedom’’ do we have in the selection
of a preferred Poincaré subgroup ofg? The only
additional structure that we have had to introduce is
the condition ﬁﬂb: 0. Note, however, that some such
condition is essential to obtain a meaningful expres-
sion of angular momentum: It follows from Eq. (25)
that, in a general conformal frame, £, would fail to
be divergence free; hence, the resulting expression
for angular momentum would fail to be independent
of the 2~sphere cross section used in its definition,
What is the most general condition that can be im-~
posed on Kab to ensure that § ., 18 divergence-free?
Using the assumption B,;=0, it is easy to see that
we must require K to be “pure trace,’ i.e., to be
proportional to the metric hy, on K. Finally, the
proportionality factor can be determined by demand-
ing that the procedure should single out the ‘““correct”
Poincaré subgroup ofg in the case of Minkowski
space—time; the factor turns out to be zero. It is
in this sense that the condition—and hence the re-
sulting Poincaré subgroup of g —is canonical.

How is the definition of angular momentum related
to this Poincaré group ? Note, first, that, given a
metric g, in the preferred subclass, one obtains
[using the 1-parameter family C,(g,,) of cross sec-
tionsl, a natural lifting of the Lorentz group on the
hyperboloid K to a Lorentz subgroup of the Poincaré
group on Spi, Hence, the angular momentum-—de~
fined by Eq. (27)~—may be regarded, more naturally,
as a mapping from the vector spaces of Lorentz
Lie algebras of this Poincaré group to the reals,

It is curious to note that, for each real number 7,
the set of cross sections contained in the family 1,
can be given, naturally, the structure of Minkowski
space, Furthermore (the 1-parameter family of)
these Minkowski spaces are naturally isomorphic
to each other; the structure group of Spi provides
these isomorphisms, Hence, we may identify them
and call the resulting space the asymptotic
Minkowski space. Since the action of the Poincaré
group on Spi leaves each family f, invariant, it can
be extended to the asymptotic Minkowski space; as
might be expected, this action just coincides with
that of the natural isometry group of the asymptotic
Minkowski space. Finally, conserved guantities can
be expressed as tensor fields on this Minkowski
space: The total 4-momentum is represented by a
constant vector field, and, the angular momentum,
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by a second rank, skew tensor field with the usuat
transformation property under the change of origin.

This concludes the discussion on angular momen-
tum. Note, finally, that since 6‘1,, is symmetric,
trace-free, and divergence-free, one might imagine
constructing another conserved quantity,
fsgﬁ"”(ﬁbf(k)eam,,dsm" from £, using the conformal
Killing fields D#f(k) on K. This quantity vanishes
identically; it is not hard to show that B,,.admits
a tensor potential £, with B, = — 4€,,, D"4" so that
one can repeat the argument used to show that the
“magnetic’’ analog of the 4-momentum vanishes.

7. DISCUSSION

In the preceding sections, we have presented a
new description of the asymptotic structure of the
gravitational field at spatial infinity. In the final
picture, this description has turned out to be similar
to that of null infinity in many ways. Thus, the
universal structure of Spi is very analogous to that
of {: The asymptotic symmetry groups in the two
regimes have the same broad features, the links be-
tween conserved quantities and asymptotic sym-
metries are parallel, and, in both cases, conserved
quantities emerge as integrals of asymptotic fields
over 2-sphere cross sections of the structure at
infinity.

However, there do exist at least two important
differences, both of which make the spatial descrip-
tion seem somewhat less “natural” than the null.

The first of these is that whereas in the null
regime differentiability requirements on the
completed manifold and the rescaled metric are
simple, ¥ in the spatial regime they have turned out
to be quite awkward. Could we have, somehow,
avoided these complications ? Let us begin by analyz-
ing, in intuitive terms, why these complications
arose. An elementary calculation®'!® shows that, in
the case of the Schwarzschild space—time, the con-
formal curvature of the rescaled metric must diverge
at . Since any reasonable definition of asymptotic
flatness must admit this space—time as an example,
one is severely constrained in one’s choice of differ-
entiability requirements: The strongest condition
that one can impose is that the metric be C! at 0,

If we had actually imposed this condition, our analy-
sis would have been considerably simpler; in this
case, the resulting description of spatial infinity
would have inherited a much richer structure. For
example, without any extra assuinptions on the be-
havioy of the asympiotic curvature, the Poincard
group would then have emerged as the asymptotic
symmetry group. However, as remarked in Sec.

2, it turns out?® that C'-differentiability also im-
plies the vanishing of the total (ADM) 4-momentum.
(Intuitively, in this case the physical metric
approaches the flat metric “as 1/#2” rather than
“as 1/v” at spatial infinity.) Hence the Cl-differen-
tiability is simply too strong. What would have

been the result if we had required the metric to be
only C% at i°? The situation would have been just the
opposite: One would have obtained too little structure
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to make useful constructions. For example, since
the analysis of the “second-order” structure at i
requires the use of a (possibly direction-dependent)
connection, with a C? metric one could have ex-
amined only the “first-order’”’ structure. Conse-
quently, the “blown-up’’ structure would have been
just the hyperboloid A, and the asymptotic symmetry
group, just the Lorentz group; one would have lost
all supertranslations. The situation would have been
even worse in the analysis of physical fields. For

if g, were only C° at i, ¢1/2C_, ., need not have
admitted a direction-dependent limits there. Con-~
sequently physically interesting asymptotic fields
could not have even been introduced in the gravita-
tional case. Thus, if one wishes to introduce 7° at
all, one is forced to accept the awkward differen-
tiability condition on the rescaled metric §ab.

The second difference is that whereas in the null
regime ¢ provides, simultaneously, a boundary
for the space—time manifold, an arena for asymptot-
ic symmetries and a home for asymptotic fields,
in the spatial regime, in a sense, the three roles
have become disjoint, being played, respectively,
by %, Spi, and the hyperboloid K. Could we have
introduced just one structure instead of all three?
One can, in fact, imagine!* an alternate approach in
which one introduces neither ® nor Spi but only a
timelike 3-manifold analogous to X which serves
as the ‘“‘spatial boundary’’ of the space—time in the
same way as ¢ serves as the “null boundary. ”’
Such an approach has several advantages: One can
discuss spatial infinity by itself without any refer-
ence toﬂ, and one can deal, throughout, with
smooth manifolds and smooth tensor fields. Note,
however, that there are many advantages in having
both ¢% and Spi at one’s disposal. Thus, for example,
as we shall see in the next paper, the presence of
i% is crucial in relating the asymptotic structure at
spatial infinity with that at null. Next, the tangent
space at i provides a natural common home for
various conserved quantities making it easy to relate
them. Isometries in the physical space—time can
also be most conveniently analyzed and classified
by examining their behavior near i°.29 Furthermore,
the tangent space at ¢ also provides a natural arena
for investigating the relation between these iso-
metries and the corresponding conserved quantities.
For example, one expects that, in stationary
space—times, the “asymptotic rest frame’’ defined
by the Killing field should coincide with that defined
by the total (ADM) 4-momentum. While it seems
rather difficult to obtain an unambiguous formulation
of this conjecture in the abhsence of ', it is easy to
obtain not only a formulation but also a proof using
the tangent space at . Similarly, the structure
made available by Spi is useful in several ways. For
example, it seems difficult to obtain a “local’’ char-
acterization of the asymptotic symmetry group in
the absence of Spi: If one has available only the hyper-
boloid K—or, a suitable analog thereof—one must
apparently introduce asymptotic symmetries as
diffeomorphisms in the space—time manifold which
preserve asymptotic conditions. While such a de-
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scription of asymptotic symmetries may seem satis-
factory mathematically, it is rather awkward from
an aesthetic viewpoint; the main reason behind the
introduction of boundaries is that one wishes to ana-
lyze the asymptotic structure of space—times using
local differential geometry at-their boundaries.
Finally, it is the structure made available by Spi
that enables one to introduce such notions as that

of the “asymptotic Minkowski space at spatial in-
finity.” The existence of these notions provides,

in turn, mathematical tools to obtain precise formu-
lations—as well as proofs—of intuitive conjectures
concerning isolated systems. Thus, in absence of
either 7° or Spi, our analysis of the asymptotic
structure of space—time would have been seriously
hampered.
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APPENDIX A: MATHEMATICAL PRELIMINARIES

In this Appendix, the differentiability conditions
and conditions on tensor fields at ¢° are discussed.

We beginAby defining direction-dependent tensors
at i, Let (M, g,;) be given as a C! manifold with C°
metric Z,,, where &, is C? on the image of M in M.
Let T be the family of C! spacelike curves in M,

C? on the image of M, passing through i’; and let
ve= I’ have unit tangent vector n® at i, A C? tensor
field 7%***?...., on the image of M is said to have a
regulay divection-dependent limit at i if:

(i) The limit of T¢*?,.,, along v at 2 exists for
all ye T, and depends only on ¢, We write
lim L ;0T% "%, ;= T2 ...,0) for this limit.

(ii) The derivatives of all orders of T****? ... (1)
with respect to n¢ exist; and if 8,T*"?....,(n) denotes
the derivative of T#"*?,,..,(n) with respect to 7%, then

8,T*"*0 ... y(0)

= li-IBlQl/2§eTa"-bc."d
nd 2
holds, where v is the derivative operator associated
with 2.

The role of condition (i) is clear: A tensor field
T%**? ..., for which lim _;0T*""?...., exists defines a
mapping from the unit hyperboloid/( of spacelike
vectors at 0 to tensors at i* having the same index
structure as T9"*?...,. Condition (ii) ensures that
T%**b () is a smooth mapping, and that the derivative
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of T%**b_,..,(n) is given by the limiting formula
which holds for direction-dependent tensors at i°

in Minkowski space—time. (The derivative operator
9, is defined by:

k49, T n (n)

PQCOq

R )

for any vector field 2 on K , and n%9,T™"*n,,.. =0.)

If T"2....,(n) is orthogonal to 7% (on all its
indices), it defines, naturally, a tensor field onK
which we shall denote by T**%_,..,. However,
8,T%**?.....(n) will not, in general, be orthogonal
to 7 (on indices other than ¢) even if T®***? ., (1) is.
It is therefore useful to introduce a derivative opera-
tor D, which acts on direction-dependent tensors at
i% and which preserves orthogonality to 72,

The metric 3,, has a limit at /%, lim . ;08,, = &uw»
which is direction independent (since g, is C9):
9,8,.(n) = 0. The direction-dependent tensor hy,(n)
=g (M —n,n, is orthogonal to 7%, and so defines a
tensor field hy, on K. This hy, is the natural metric
on K. For T®**b . .(n) orthogonal to 112, D,T***? ...,
is defined by

De’Iﬂ...bc-ocd(n)
=h,"(he () « « + B2 (2 (n) - - - h ()
X8, TP . (n).

Clearly, D,T****%....,n) is orthogonal to 7, and so
corresponds to a tensor field D,T****? ..., on K.
Furthermore, it is easily verified that D, defines a
derivative operator on K. In fact, this derivative
operator is the covariant derivative associated with
h,,; for since 8,8,.(n) =0, 8,m,=h,(n) hold, we have
D,h,.=0.

We now define the C! differentiable structure at
9. Tet (U, ¢) and (V, ¥) be charts containing ¢’ in
the C! atlas of M, such that the restrictions of ¢ and
¢ to the image of M are C! maps. The chart (V, ¥) is
said to be C’! compatible with (U, ¢) at i° if
(02(2; o071/ b 0 ,) o and (&R (o, o¥™)/0x;0x,) oY have
direction-dependent limits at i% for all j, k, and i,
where ¢; and ¢; are the ith component maps of ¢
and ¢. The family of all charts C’! compatible with
(U, ) at {* is the C>! differentiable structure on M
at i compatible with (U, &).

A C? tensor field T%*%...., on the image of M is
said to be C0 at i® with respect to a C’! differentiable
structure at ¢° if the first derivatives of its compo-
nents in a chart (and thus in all charts) belonging to
the C! differentiable structure have regular direc-
tion-dependent limits at . More generally, a
tensor field whose components have vanishing deriva-
tives up to order k— 1 at i, whose kth derivatives
are direction-independent at ¢, and whose (2+1)th
derivatives have direction-dependent limits at i,
is said to be of class C’* at ¢°.
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The condition that g, be C>° at i® with respect to
a differentiable structure determines the differenti-
able structure umquely, for if the first derivatives
of the components of gab in two charts containing ¢°
have direction-dependent limits at %, the two charts
must be C’°! compatible with each other. 20 The C>1
differentiable structure with respect to which the
metric g, is C* is called the C’! differentiable
structure on M at 7,

Finally, note that, from the requirement that
2, be C°Vat %, it follows that lim . ;0% 28 g
=R ) defines a direction-dependent tensor at
i%. Since the first derivatives of the components of
gab have regular direction-dependent limits at &7,
so do the components of its connection, Condition
(ii) of the definition of a regular direction-dependent
tensor, and the definition of the curvature tensor in
terms of the connection then imply the existence of
Rabcd(n)'

APPENDIX B: ASYMPTOTICALLY FLAT
INITIAL DATA SETS IN AEFANSI SPACE-TIMES

Fix an AEFANSI space-time (M, g,;) and denote
by (M, 2,,) any of its AEFANSI completions. For
simplicity, in this appendix we shall not explicitly
distinguish between M and its image (M) under the
imbedding map ¥. Thus, we allow ourselves to
write “g,, =g, on M rather than “¥_(Z,,)
= (Q%g, on M.”

We begin by showing that there do exist initial
data sets in (M, g,;) which satisfy the ADM—G 8
conditions:

Theorem: Let T be .any three- d1mens1onal . Space-
like submanifold of (M, 2,,) such that < T, T is
C! at {* and C° elsewhere. Then the initial data in-
duced on T=T-i by g,, is asymptotically flat in
the ADM—G sense.

Sketch of the proof: Identify i with the point A
in the ADM—G framework (see Sec. 2), and use the
pullback 24 of & to T as the ADM—G conformal
factor. Denote by qab the metric induced on T by
gab and by qap, the metnc induced on T by &,. Then,
on T, qab—Q,i-,qab Since g is COat ¢ and since
is C>1, it follows that g,, must be C° at 40 Next,
consider the conformal factor $4. Because Q2 is C?
at 20 with Q| ;0=0, vm 0=0, and (V VbZ—Zgab)l ;0
=0, it follows that on T, @4 is also C2 at i and
satisfies Qf|,;0=0, D S0F10=0, and (D DbQT
—2qg) | j0=0, where D, is ‘the natural derivative
operator on (T Qs Next we must show that
Q-1/2(D,D,24 - 24,,) admits a direction-dependent
limit at i, Recall first (from Appendix A) that,
since g, is C, its Riemann tensor R 1. has the
property that, in M, Q!/28,, ,—and hence, Q1/2R,,—
admits a regular direction-dependent limit at °,
Using the fact that the Ricci tensor R,, of g,;, van-
ishes in a neighborhood of 7% and the consequent ex-
pression for R e 10 terms of O and its derivatives,
it now follows that 2-1/%(¥ VbQ 2gab) admits a regu-
lar direction-dependent limit at i, Finally, project-
ing the tensor field Q°1/%(V,¥,Q — 2gab) into (T, q,)
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and using the fact that, since T is C*0 at %, the ex-
trinsic curvature p,, of T in (M, ) adm1ts a regular
d1rect10n-dependent limit, it follows that so does
Qz1/2(D, 0,24 - 24,).

Consider, next, the conditions on the extrinsic
curvature pg of T in (M, g,5), and on the intrinsic
curvature fab of (T, qab) It is easy to check that pg,
is related to pgy, via Py =Sy, + 527 Y™V ,§0)d,,, where
7 is the & unit normal to T. Using various conditions
on the conformal factor &, it is straightforward to
check that Q'I(ﬁmﬁmﬂ) admits a regular direction-
dependent limit at i, Hence it follows that p,, satis-
fies the ADM—G condition. Consider, finally the
Ricci tensor 2, of 4,. Since Q”QR wbee Admits a regu-
lar direction-dependent limit at i, so does
Qt/2E,, where E,=C,,, n™in is the electric part of
the Weyl-curvature relative to T. Furthermore by
the Gauss—Codazzi equations, one h has /\ab— ab
+pamp = b mpab Hence, on T i Rw admits a
regular direction-dependent limit at ¢°

Thus, the initial data (g4, p,;) induced on T by
&, does indeed satisfy all the ADM~—G conditions.

Next, we wish to introduce the notion of initial
data sets “boosted” and ‘“‘time translated” relative
to each other. Two asymptotically flat data sets
(T, qgps bgp) and (1Y, qly, p2p) in (M, g;;) will be said to
be boosted relatlve to each other, if, in the comple-
tion M, T=TU # and T = T U i° fail to be tangential
to each other. Thus, if two data sets are relatively
boosted, they differ already ‘“in the first order”
at 1% (T, qu, ba) and (TV, gly, p2) will be said to be
“time translated”” w.r.t. each other if, in the com-
pletion, T and T are tangential, and if the 11m1t1ng
extrinsic curvatures pab and pab fail to agree at ¢
data sets which are relatively time-transiated agree
“to firgt order” at ¢ but not “to second-order.” If
T and TV are tangential, and if further limits of
pa,, and pg, agree, then it is easy to show that limits
of QI/ ;ab and Q‘l /’ab also agree. Hence, in this
case the two data sets will be said to he asymptoti-
cally indistinguishable.

Fix an asymptotically flat initial data set
(T, g4, P4}, “How many” asymptotically distinct,
asymptotically flat data sets can one obtain via time
translations from (T, gz, pgp) ? Let (T, q,, pgy) be
one such data set. Then T’ and T are tangent1al at
% q,, and 7', agree at i* while p,, and %, have
distinct limits. Therefore, the collection of data
sets under consideration can be “labeled” by the
limiting direction-dependent values of their extrinsic
curvature. Note, however, that this limiting value is
oonstramed The Gauss—Codazz1 equations imply
that D[apblzc 4,7q," qc Rm,,rs”s on T, so that by multiply-
ing by Q and takmg limits one obtains
mpb]c(n)—qa G5"AR s (DT, Where By (1), Gp
Rabcd(n) and nS are the (dlrectlon—dependent) limits of
% of pab, qab, Rabcd, and #° and where 5, is the deriva-
tive w.r.t, the 2~ -sphere of directions ‘“7n” in the
tangent space of T at ¢;. How many solutions f)ab
does the last equation admit? Note that, for any
data set (T, q,;, pq) which is time translated relative
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to the given one, (T’, q; ,pab) we have

qamqb qcrﬁmrs(n)n q’ mq’nqchnwrs(n)n . Hence,
AP (1) = P,y — DY, satisfies 5;,4D,,.(1)=0. Thus,

there are as many solutions to the contraint equa-
tion on Py, as there are to 5;;AD,,(n) = 0. Fortunately,
one can write down the general solution to this last
equation

ADy (M) =55, x (M) + 315, X (M) + B8 x (M + XM gy (BL)

where Xx(n) is an arbitrary (smooth) function on the
2-sphere of directions 7. Thus, there are as many
solutions to the constraint equation as there are
functions on a 2-sphere. Hence, we conclude that one
can obtain as many asymptotically flat initial data
sets via time translations of (7, g5, p) as there

are function on a 2-sphere. All these data sets agree
with one another to the ‘“first order” but not to the
“second.”

Finally, it is obvious from the above discussjion
that, restrictions to M of diffeomorphisms in M which
leave ( ¢ and) #° invariant and which are C>! at °
provide us with “asymptotically regular” evolusions
in (M, g,5), evolutions which preserve the ADM—G
asymptotic conditions.

APPENDIX C: SOME AEFANSI SPACE-TIMES

Explicit constructions of the conformal comple-
tions for the Minkowski and Kerr geometries are
given in this appendix, along with a discussion of
the radiative perturbations of the Schwarzschild
geometry. A general form for the space—time
metric satisfying the “local conditions at %’ re-
quired by the definition of AEFANSI space—times is
also given.

The metric of Minkowski space in spherical
coordinates is

ds®=— di* + dv* + v*(d6? + sin®0 d¢?). (C1)
Let v and w be given by
=y+t, w=r-—_t. (c2)
In terms of these coordinates, the metric is
ds’= dv dw + v+ w)? (d6? + sin%0 do?). (C3)
Set o=1/v, w=1/w, and & =9w; the conformally
rescaled metric is
ds = ds?
= dbdib + 10 +w)* (d6® + sin’0 dg?), (C4)

Comparison of (C4) with (C3) shows that the re-
scaled metric is flat (in fact, this rescaling of the
Minkowski metric is induced by the action of the
inversion about the origin in the flat-space conform-

al group) Thus, the introduction of coordinates
(t,%,y,2) given by
f=— 10 ~w), (C52)
%=1(0+w) sinf sing, (C5b)
3 =21(0 + %) sinf cos¢, (C5c)
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(C5d)

leads to a metric which can be extended over all of
R?. This extended mamfold is a neighborhood of #°
in M. The surface f = (x2+ 2 +2H)1/2 forms that por-
tion of J* to the past of w=0; f =— (X2 +52+2 )1/2 is
the part of ¢~ to the future of v=0. The point =%
—y zZ=0 is, of course, %, The conditions on the
metric and conformal factor are trivially satisfied;
in fact ga,i is everywhere analytic and { satisfies

¥, VySt=2g, everywhere.

~ ~
=10 +w) cosh,

We now consider a more interesting example: The
Kerr solution. In Boyer— Linquist coordinates, the

metric® is given by
2Mr
I O 2
ds’= <1 rz+(1200s6> t

4Mavr sinf

T P ralcosd dtde

72 +a’ cos® 9 9 5
+md?’ +(V2+(l cos?®h) do

20Ma’y sin®d
2 s20 g0
+ <r2+a + +(1200529>Sm9d¢ . (ce)
Set
y*=f{r)

=v+ M/ (M - a2)1/2[M+ (M?* —a?)1/2

i

v
><1’“<M+ O =aPi7? ~ 1>

- [pM = (M2 —(12)1/2] In <-M——U\/I2L—?ﬁﬁ - lﬂ
cn

and introduce coordinates # and # given?® by

- 3E) o)
-]

Define »=1/7, and let & be given by

Q=0 [1 —om 22 <1 +1n £>} )
v v

Then the conformally rescaled metric is

dS? = Q? ds?
e, 2 \7 2
<l+1n A >]
Yozl

oM )'1

(C8a)

(C8h)

[l—ZM

Ale-
x[(l_
(-

aMp \"1 L
1+a2p? -

1a%7 s1n26>
2 1+aP

T O A
1+ap?

2My
1+@r?cos’d

2]‘4; )] ~ ~
— — dvdw
1+a*ricos’d
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102 oNMD )'2 <a272 sin29>
A b1 1= T2 1+a%P
oMr 2M7r ~9
< (- 20 - eatewn) | 4
1 2 2Mi) )'2 <a272 sin26>
i P L= 1700 1+ a2

2M7 ~y
. <1_ 1+a’r cos26)] dw

- 2Mp \! < 2Ma7 sin’6
72 —
e < 1+a7"2> 1+ a7 cos?d dodp

oMF
1+a?7

oM oMa¥ sin’f

ne g =Rt d
vt 1 <1+a2w2> <1+a2720<>s?8 divdp

{}2
+ =5 (1+a*¥* cos?0) db’
52 452 2Ma*7 sin’0 )
2 ) 2
72 (1+ Pt B cote ) SN0 AT (. (CO)

Now let (£ 7,3, 2) be given in terms of (0,1, 6, ¢)
by (C5), as in Minkowski space, and extend the Kerr
manifold to all values of these coordinates. The re-
sulting manifold again forms a neighborhood of %
J* and ¢~ are the same coordinate surfaces as in
Minkowski space. However, the metric §ab is only
C® on ¢ and C*? at . The conformal factor S
satisfies the requlred conditions on Q and at ¢°
and the direction-dependent tensor Kab(n)—the tensor
potential for B b(n)-—vamshes for this choice of con-
formal factor.

The remaining quantity of interest is the Weyl
tensor. It is convenient to introduce a null tetrad
(13, m®, m®, n%, where in Boyer—Lindquist coordinates
the tetrad vectors have components

<r2 2Mr+a2>1/2
Vo 7 +al costd

< r+a?

ll
a
m’l-o'-m)’

oz L L (s
e F s (s, .1

1 (P =2Mr+a®\1/?
Vo \ R +a’cosih

o r+a?
R—2Mr+al’

(C102)

_i
sinf/ "’

(C10b)

a
~LO=T 2Mr+a?> - (C10c)

In terms of this tetrad, the Weyl tensor for the Kerr
solution can be written in the form

Canca+? *Copea

M

= T —iacosa) Vst

+ U pgnyy = Mgty ) Uy gy = my i gp)

+’_’;l[a”b]l[cmd1]' (Cll)
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To study the asymptotic behavior, of the Wexl ten-

sor at i, we introduce the tetrad (d) 0%, ma, ),
given by
ia:%@wl/z—zlﬁ %no (C12a)
p,= 79,_2- [— <%>1/2za+ <%> Uzna] s (C12b)
= Qim,. (C12¢)

The tetrad vectors 0¢, 59,/7%, and j;* have direction-
dependent limits at i% and 1im,ioﬁ“—na From the
orthogonality relations for the tetrad, it is clear that
the dlrectlon—dependent vectors defined at i° by ¢“
m4, and j3* correspond to a triad (%, m?, m°) 0n/<

In terms of the tetrad (d} P8, 7%, i»9), the conformally
rescaled Weyl tensor can be written

A ~

;] Ok
cabcd +1 Cabcd

_ 2< » >< M >
B $202) \ (1 — a7 cosh)?

(l +1n gf—)] *
vu

) [~ Pro)iiy) @i+ Prodingy

[ 2MDD
x| 1= —=
>

= 2Dy + iy (281 Py + Py i gy)

+ (Zzta’“;’[a)’%bl@tc‘f’[c) ’;71111 . (C13)

To evaluate the mass and angular momentum, we
need only obtain expressions for E,, and Ba,, ona
fixed cross section of K. For convenience, we
choose the intersection T of K with the tangent plane
at i to the hypersurface 9 =:#. On this cross section,
E,, and 8,, take the form

E = M@y, + mimy,), (C14a)

B = 3Ma cos (¥, + m M y,). (C14b)

[Note that, since K,, vanishes (in this conformal
frame), B,,=0.]

The mass is obtained by integrating E,, over the
cross section T, using ¥° as the integrating factor
(on Z, ¥° clearly represents the 4-velocity of the
natural asymptotic rest frame of the system):

P0=.fE b MY™pn+ dm™ fn+ 3™ mn) dS,

—————[ [ sinf dé d¢

=—=M. (C15)

The only interesting component of the angular mo-
mentum is that about the symmetry axis. The corre-
sponding tensor F,, has as its projection onto K

fab= icosd m[aﬁb];

thus the component of the angular momentum about
the symmetry axis is
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M™F,, = z:€mnpfmn39q ast
1 27 T
1. [ 3Ma cos?6 sinf db do

=Ma. (C16)

We next examine the effects at i of the linearized
radiation fields in the Schwarzschild background
constructed by Bardeen and Press. ‘" They begin
with the Schwarzschild metric in coordinates
(u,7,0,¢) such that the metric takes the form

ds? =~ (1 - “;;‘[)duz — 2du dr

~ 72(d6? + sin®6 ¢ 2), (C17)
The perturbations they consider are expressed in
terms of an arbitrary complex-valued function
Au,0,¢) which is assumed to have a convergent
expansion in spherical harmonics,

Alw,8,0)=33 3 A @)Yy 0,6).

1=0 m==1

(C18)

The perturbed Weyl tensor constructed from this
function is shown to lead a regular geometry on

g* if the first (+2) derivatives of A}, (x) are every-
where bounded and if

o, (=2)\2 ru .
<2l (21)!> f 'A(zfni)(uo)’2du0<<ﬂ/1

-0

(C19)

holds for all finite #, where the superscript pa-
rentheses denote differentiation with respect to u,.
However, the peeling behavior! of the Weyl tensor on
g~ is guaranteed only if, in addition,

,}.IE.} Agolad), (C20a)
limA,, ), (C20b)
U =
limuA{}) @), (C20¢)
u-o-oo
limu?A$Z) (u) (C20d)
u-.-m
Limu*#2AR W), 1z2, 0<k=I+2 (C20e)
u..-no

all exist.

A similar analysis shows that conditions (C20) im-
ply the ex1stence of a direction-dependent limit for
Qi/2€ ,_, at i (in fact, somewhat weaker conditions
suffice). The existence of the direction-dependent
tensor B, also follows from (C20) if lim,..culAq(u)
— Ay (u)] exists, where the bar denotes complex con-
jugation. This last condition appears simply to pre-
clude nonzero angular momentum monopoles at
spatial infinity, and is to be expected if the per-
turbed metric coefficients are to be nonsingular®® on
(. Thus, the appropriate behavior of the perturbed
Weyl tensor components at 9 follows from regularity
requirements on ¢* and ¢-. It is remarkable that
conditions (C20) for regularity on ¢~ should imply the
necessary conditions at ¢C.
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We conclude by giving a general form of the metric
satisfying the “local” conditions at #° [i.e., condi-
tion (iii)] in the definition of AEFANSI space—times.
The form is

v+w
v

ds’= <1+ a> dvdw+;wg[3dvz+&%ydw2

'U+7/U6 dZAd'U+

A gy
+ eAdz dw

v+w +u
v

(C21)

+ 30+ w) <qAB ¢>AB> dzA dzB,

where q,5 dz4dzP is a 2-sphere metric (upper case
Latin indices take the values 2 and 3). The metric
coefficients o, 8,7, 0,4,€,, and ¢ 45 are smooth
functions of v, w, and 22, continuous (and bounded)
as v—o or w—«, and smooth functions of v/w and
z4 in the limit v —~«, w—« with v/w finite and
nonzero.

By the introduction of new coordinates P=1/v,
w=1/w, and a conformal factor 2=vw, a metric is
obtained which is C% as 0 — 0 or ©# — 0, and which,

in coordinates (f,%, 7, 2) related to (@, %, z4) by the
analog of Eqs. (C5), is OV at f=x=5y=3%= 0 The
conformal factor £ vanishes where v D=0 or {é: 0, and
at f=%= y=z=0 it is C* and satisfies =0, v,2=0,
V.V, @=2g,. Thus, the coordinates (,3,2, f) may

be extended to form a neighborhood of i'in the ob-
vious way.

Note, however, that there do exist additional
conditions that the metric (C21) must satisfy before
the space—time can qualify as AEFANSI: No field
equations have yet been imposed on the metric,
Thus, for the metric under consideration, there
may exist no potentials (formed from the Ricci
tensor R,,) for asymptotic fields E,, and By,. Fur-
thermore, B, need not vanish and hence 8, need
not exist. Finally, it is by no means clear that the
metric (C21) is weakly asymptotic simple. The ex-
ample of the Kerr solution shows that even if the re-
scaled metric can be made regular on ¢ by a coor-
dinate transformation, this transformation will in
general be only C° at ¢°.4° However, it seems un-
likely that the imposition of field equations, at least
to the required asymptotic order, will seriously
restrict the functional freedom in (C21); and regu-
larity on ¢ appears to play no essential role at °,
In any case, it is known? that there exists a large
class of weakly asymptotically simple space—times.

From the fact that the metric given in (C21) ap-
proaches a Minkowskian metric about as slowly as
one would expect (it may be though of as Minkowski
metric with correction terms of order “1/#) it
seems reasonable to expect that any metric which is,
intuitively, asymptotically flat at spatial infinity will
satisfy at least the local conditions at ¥ to be
AEFANSI.
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A new technique is introduced to investigate the structure of isometry Lie algebras. Some general results
are first proved by applying this technique to 7n-dimensional manifolds equipped with metrics of arbitrary
signature. A restriction is then made to 3-manifolds representing the space of orbits of the timelike
Killing field in stationary space-times. Under the assumption of asymptotic flatness at spatial infinity, a
complete description of isometry Lie algebras of these 3-manifolds is obtained. As corollaries, several
results about symmetries of stationary isolated systems in general relativity are proved.

1. INTRODUCTION

The purpose of this note is to introduce a new
technique for analyzing the structure of Killing fields
on metric manifolds, a technique which appears to be
useful especially in the investigation of symmetries
of isolated systems in general relativity.

In Sec. 2, we consider general n-dimensional
manifolds equipped with (nondegenerate) metrics of
arbitrary signature. With each point p of the manifold,
we associate two algebras, I, and C,, of dimensions
n(n+1)/2 and (n +2)(n +1)/2, respectively, with the
property that there exists a natural imbedding of the
isometry Lie algebra of the given metric manifold
into (or, onto) I,, and of the conformal isometry Lie
algebra into (or, onto) C,. These two algebras turn out
to be powerful tools in the investigation of properties
of Killing and conformal Killing fields. To illustrate
their use, some general statements about isometries
of n-manifolds are proved with their aid. While some
of these results are well known, most, as far as we
are aware, are new,

In Sec. 3, these tools are used to investigate
symmetries of stationary isolated systems in general
relativity. For this, a restriction is made to 3-mani-
folds representing the space of orbits of the timelike
Killing field in stationary space—times which are asymp-
totically flat at spatial infinity. A complete description
of isometry Lie algebras of these 3-spaces is
obtained using the following technique: The algebra
C, associated with the point A “at spatial infinity”
is constructed and properties of Killing fields on
the given 3-spaces are deduced by examining the
imbedding mapping from the Lie algebra of Killing
fields into C,, Using this description, several
results concerning isometries of the given stationary
space—times are established.

2. MATHEMATICAL PRELIMINARIES

A. Killing data and the algebra I,
Fix an n-dimensional, connected, C* manifold
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(without boundary) M equipped with a C* metric g,,.
Let ¢° denote a Killing field on (M, g,,). Then, since'
V.V, b, =R, t, where ¥V and R, ? denote respectively
the derivative operator and the Rieman tensor on

M, g,,), it follows that the pair (£2, &,,:=V,L,), of
tensors at any given point p of M characterizes the
Killing field ¢ completely: if ¢*|,=0and ¢,,|,=0,
then the Killing field 7* must vanish everywhere on
M. We shall refer to the pair (¢, ¢,,), as Killing
data of ¢% at p.

Let us suppose, for a moment, that (M, g,,) admits
two Killing fields ¢* and 7®. Denote the corresponding
data at p by (£%, ¢,,), and (0%, n,,),. Then, the commu-
tator [¢, 7] of the two Killing fields is again a Killing
field and its Killing data at p is given by the pair
(E™0" ="y Ea™mo = Mo Emp = Ronnast™0™py Where
ind‘ices are raised and lowered using the metric
gab b*

This fact suggests the following construction, Fix
any point p of M and consider the n(n +1)/2-dimensional
(real) vector space V, of pairs (¢2, F,,) of vectors
and skew-symmetric tensors at p. On this vector
space, introduce the following bracket, [ , ],

- Rmnabsmgn)' (1)
1 2

It is obvious that the bracket is linear in each element.
Thus, we have acquired an n(n + 1)/ 2-dimensional
algebra associated with the point p. We shall denote

it by I,. Note that the bracket is also skew symmetric
in the two elements and that the “structure constants”
of the algebra are completely determined by g,,|,

and R,, %|,. (However, I, is not an associative algebra,
nor, in general, a Lie algebra.) We shall now prove
several facts about isometry Lie algebras using the
notion of Killing data and the existence of I,.

(i) It is obvious from the construction of I, that there
is a canonical mapping from the space of Killing fields
on (M, g,,) into [and, if (M, g,,) admits the maximum
possible number, n(z +1)/2, of Killing fields, onto]
V. send each Killing field to the element of V, repre-
senting its Killing data at p. The mapping is clearly
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linear, one to one and bracket preserving, Thus, the
isometry Lie algebra of (M, g,,) is a sub (Lie)-algebra
of 1, forall p in M,

(i) Under what conditions is I, a Lie algebra? Since
the bracket is linear in each element and skew
symmetric, one only needs to check the Jacobi
identity. One obtains!

$1,2,ll(8% Fop)s (8%, F)lo (67, Fop)]=(0, M,,),
’ 1 1 2 2 3 3
with
Mgy =1 1,2.3§m§n(Rmncb Fro- Rmnacfcb)
+2EMEMR, L FC (2)

where fl'z'a denotes the operation of adding terms
obtained by cyclic permutations of 1, 2, and 3,

If the data under consideration do actually arise
from Killing fields, the Jacobi identity is, of course,
automatically satisfied. Thus, i (M, g,,) admits
three or more Killing fields, the Riemann tensor is
algebraically constrained al each point of M,

Next, using Eq. (2), it is straightforward to check
that M ;=0 for all triplets (g" a,,) (ga,F,,b), and

(§ Fa,,) in V, if and only if the Rlemann tensor at p isof
condtant curvature I, is a Lie-algebra if and only if R,y
=[(2R/nin - l)lga[cgdlblw where R is the scalar curva-

ture at p. Note that the condition on the Riemann
tensor restricts its value only at the point p; the
Riemann tensor is noft required to be of constant
curvature everywhere, not even in a neighborhood of
p. This fact will play an important role throughout
this section,

It is easy to check using Eq. (1) defining { , ], that
if Rypep=[(2R/n(n~1)] g,(cL41p1p» the Lie algebra I,
is isomorphic to the deSitter Lie algebra D(n, sgn g ,i,,
sgnR,), i.e., to the n(n - 1)/2-~dimensional Lie algebra
of isometries of a #-manifold equipped with a metric
of constant curvature, the signature of the metric
being the same as that of g,,,, and the sign of the scalar
curvature being the same as that of R|,. Hence we
are led to the following result: given M, g,,), if there
exists a point p in M such that Ry, = [(2R/n(n-1)]
EacEainipy then the isometry Lie algebra
of M, g,,) is a sub-Lie algebra of D(n, sgngy, |,
sen R | »). In particular, one has the following result
of interest to general relativity: If the Riemann tensor
of a space—time vanishes even at asingle point, then the
Lie algebra of its Killing fields is a sub-Lie algebra
of the Poincaré Lie algebra,

(iii) Let #=2. Then the Riemann tensor always
satisfies R ,.4) ,=Re,1c80151 fOr all p in M. Thus, in this
case, I, is always a (three-dimensional), Lie algebra.
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(This does not of course imply that every 2-manifold
admits three Killing vectors: The scalar curvature R
need not be a constant function on M.) Hence, we recover
the well-known result that the isometry Lie algebra

of every 2-manifold is a sub-Lie algebra of the
isometry Lie algebra of some 2-manifold with constant
scalar curvature. This result is in turn useful in
proving facts about metric manifolds which admit
exactly two Killing fields: Using the definition of the
bracket [ , ],, a complete list of possibilities relating
the Abelian or non-Abelian character of the isometry
Lie algebra with the sign of the scalar curvature and
the signature of the metric on the integral manifolds
of Killing fields can easily be obtained.

{(iv) Let M be an n-manifold. Let there exist n
commuting Killing fields on (M, g,,) which span the
tangent space at some point p of 7. We shall show
that g, is necessarily flat and that (M, g,,) cannot
admit any additional Killing fields which commute with
the given »n, Note first that since the given #» Killing
fields are closed under the Lie bracket, and since they
span the tangent space at p, they span the tangent
space at every point of M. [This follows from the fact
that if, on an n-manifold, a Killing field vanishes on
a (n-1) surface, it must vanish everywhere, which,
in turn, follows from the result that a Killing field
is completely characterized by its Killing data at
any one point. | Furthermore, since all Killing fields
commute, one can choose suitable linear combinations
to obtain » orthonormal Killing fields whose derivatives
vanish identically. Next, using the expression of the
bracket [ ]p and the fact that the isometry Lie algebra
of (M, g,,)is a sub-Lie algebra of I, it follows that
the Riemann tensor R, , of (M, g,,) must vanish
1dentically. Finally, using the expression of the
bracket | , ], (and the fact that R,,.,=0), it follows
that I, cannot admit any element which does not belong
to the n-dimensional Abelian sub-Lie algebra of the
elements of the type (£¢, 0) and which commutes with
every element of this sub-Lie algebra, Hence it
follows that (M, g_,) cannot admit any additional
Killing fields which commute with all the » given
Killing fields.

The assumption that the Killing fields span the
tangent space at some point is unecessary if either
n+4 or if g, is positive definite: In these cases,
the fact that the Killing fields commute itself
implies that they must span the tangent space at
each point of M.* Thus, one has the following result.
An n-dimensional metvic manifold (M, g,,) cannol
admil more (han n commuling Killing fields and
Zap 1S necessavily flat if il does admil n, provided
at leasi one of the following conditions is mel: (a)
n<4, ) g, is positive definile.

Results discussed above are only meant to illustrate
the use of the notion of Killing data and the existence
of the algebra I, to prove properties of Killing fields;
the class of results that can be established using
these techniques is by no means exhausted. Indeed,
essentially every elementary fact about isometries
can be proved in a rather simple manner via these
techniques.
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B. Conformal Killing data and the algebra C,

We shall now discuss, briefly, a generalization
of the notion of Killing data and of the algebral,, a
generalization which will serve as a useful tool in
the investigation of conformal isometry Lie algebras.
The notions to be discussed in this subsection will
also be of direct use in Sec. 3.

Consider again an n-dimensional manifold M,
equipped with a metric g,, of arbitrary signature.
Fix a conformal Killing field ¢* on (M, g,,). Then,
using the conformal Killing equation, one obtains
Ve =

ab‘“

1/71) gab!
Vavlb@cl :Rcbam gm + (Z/Vn)ga[cvb](vmgm)’
V,9,(9,.27)

=[n/n-2)K- "V [R,, - (R/2(n~ 1) g,,) = (2/n)(V &™)

X [Rab - (R/2(n~ ga + RVl + Rmbvlmgal}'

Thus, the quadruplet (£, Vi &y, V80, V,4(V,6)],

at any given point p in M suffices to determine the
conformal Killing field ¢* everyvwhere. We shall
therefore refer to this quadruplet as the conformal
Killing data of ¢* at p (relative to g,,).

Consider now the vector space V,° of quadruplets
(£% F,,, &, K,) at p, where £° is an arbitrary vector;
F,,, an arbitrary skew tensor; ¢ an arbitrary number;
and, K, an arbitrary covector. This space is clearly
(n+2) (n+1)/2-dimensional. Following the procedure
used in the case of the Killing data, we now introduce
a bracket on this V,°:

{(ga, lFab’ ?’ 11(")’ (zga, fab’ <21>, IZ{a)}P

L

with
a_mE a_ gmf a_ a a
i L I
3Fab"lFa F F mF +2K!a€b]_2Kla£b]
R &-c d
abed; § H (3)
$= 50—

3 1 2

—_ m b
K, =K"F oy = K"F 0+ 9K, - OK, +[1/(n-2)] Babcf, §°

+[2/ n-2

(@E" = 2EMS,, + 2/ (n = D) NEF™ Ry

- gblﬁ‘m(bRa)m)‘

Here, S,,=R,, - (R/2(n-1))g,,, and, B, .=Y.,S,,,

is the Bach tensor, (For n>3, By, =4[(n-2)/(n-3)]
XVeC,cq Via the Bianchi identity.) The bracket is clearly
linear in each element, We have obtained a (n +2)(n +1)/
2-dimensional algebra. Denote it by C;.
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As in the case of the algebra I,, one can investigate
the structure of the algebra C,. We shall mention
only two aspects: (i) it follows from the definition of the
bracket { , }, that the conformal isometry Lie
algebra of (M, g,,) is a sub-Lie algebra of C, for each
p in M; and, (ii) C, is a Lie algebra (i.e. { ' b
satisfies the Jacobi identity) if and only 1f one of the
following holds: (a) n=2; (b) n=3 and B,,.|,=0; or,
(c) n>3and, C,l,=0, V°C,,.,|,=0. Again, one
can use these facts to prove properties of conformal
Killing vectors.

Remarks: (1) Note that, although the notion of
conformal Killing fields is conformally invariant—
it refers only to the conformal structure rather
than to the Riemannian structure on M—the notion
of conformal Killing data is not; to obtain the data
from a conformal Killing field, we have used a specific
metric in the conformal class, This is the reason
behind the presence of nonconformally invariant
terms (involving the Ricei tensor) in the structure
constants of the bracket { , },. The final results—
e.g., the necessary and sufficient conditions for
{, },tobe a Lie bracket—are, however, conformal-
ly invariant, as they must be. It would, nonetheless,
be desirable if the entire analysis could be carried out
in a manifestly conformally invariant fashion, (ii) The
condition for I, to be a Lie algebra involves only the
value of the Riemann tensor at p while the analogous
condition for C, involves both, the value of the Weyl
tensor and that of its derivative at p. This difference re-
flects the fact that whereas the metric structure is
rigid of order one the conformal structure is rigid of
order two.,?

3. ASYMPTOTICALLY FLAT STATIONARY
SPACE-TIMES

We shall now use the tools developed in the previous
section to analyze symmetries of stationary isolated
systems in the framework of general relativity.

Fix a stationary space—time (M, g,,, ). Denote
by S the manifold of orbits of #*, and by 4,,, t

natural metric on 8. The space—time (M, g,,, ”)
will be said to be asvmptotically flat at spatial
infinity provided there exists a €~ 3-manifold §
equipped with a C* metric h sat1sfy1ng the following
conditions?: (i) As a point set §=8 UA, where A is a
single point; (ii) &,, is positive definite in a neighbor-
hood of A and ha,,_ﬂ h,, on S where  is a scalar
field on § which is C? at A and C~ elsewhere; (ili)
AtA, =0, DaQ =0, and, DanSZ~2h,,b, where D is
the derivative operator on (S, Zab); and (iv) there exists
a neighborhood N of A in 8 such that in TT"}(SN N)
Einstein’s vacuum equation is satisfied, where 7 is
the natural projection mapping from M onto S.

Throughout this section we shall assume that the
given stationary space—time (M, g,,, /) is asympto-
tically flat in the sense of this definition; we wish to
analyze the constraints imposed on the structure of
additional Killing fields of (M, g,,) by the assumption
of asymptotic flatness at spatial infinity.
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Recall, from Sec. 2, that if the curvature tensor
of a metric manifold vanishes even at a single point,
its isometry Lie algebra is a sub-Lie algebra of that
of a flat manifold (of the same dimension and equipped
with the metric of the same signature). Since (8, &,,)
is asymptotically Euclidean?—its curvature vanishes
asymptotically—one might expect the isometry Lie
algebra of (S, h,,) to be a sub-Lie algebra of the
isometry Lie algebra of the Euclidean space. In the
first part of this section we shall show that this
expectation is indeed correct. In the second part, we
shall further assume that the total mass associated
with the space--time is nonzero, and analyze the
additional restrictions imposed by this assumption
on the permissible isometries. In each case, the
analysis of permissible Killing fields on (S, h,,) will,
in turn, yield information about the structure of
isometries of (M, g,,).

A. General asymptotically flat space-times

Let us begin by analyzing the structure of the
isometry Lie algebra of (8, 7,,). The key idea is to
examine the behavior of Killing fields on (S, &)
at the point A at infinity, Since the point A belongs to
the completion § and not to § itself, and since the
metric h,, is not even defined at A, (recall that Q |, =0),
we must first regard Killing fields on (8, #,,) as
conformal Killing fields on (S, %,,) and {hen look for
their extensions to the point A . Let £% be a Killing
field on (S, h,,). Then, [ j, =207/, Q)h,; £ is a
conformal Killing field on (S, }fq)- Since the metric
h,, is smooth at A, £? admits a smooth extension £2
to 8.% (On S, £°=£9,) Hence, one can examine the
conformal Killing data of £ at A. Since £° is not only
a conformal Killing field on §, f,,) but also a
Killing field on (8, #,,), its data at A are constrained,
To see this, note first that given two asymptotically
Euclidean spaces (S, k,) and (S’, #.,) [satisfying
conditions (i), (ii), and (iii)] with an isometry 4 from
one to another, the mapping ¢ ez;tends uniquely to
their completions (é, fzab) and 87, A2,), the point A
in § being mapped to the point &’ in §’, and the metric
Jiylato the metric fi/, | ,.° Note that, due to condition
(iii), one does not have the freedom of rescaling the
metric at A: Only those conformal rescalings, Q —~ wQ,
are permissible for which w is (smooth and unit)
at A. (Thus, the metric at A is “universal.”) Consider
now the one parameter family of diffeomorphisms
generated by £ on 8. Each of these diffeomorphisms
is an isometry on (S, &,,). Hence, its natural extension
to § must leave A and the metric &, at A invariant.
Hence, £%|,=0, and D %], =0.° Thus, two pieces of
the conformal Killing data of £* vanish identically at
A if £2 is a Killing field on (8, h,,).

Consider now the six-dimensional subspace V% of
the (ten-dimensional) vector space V§ of conformal
Killing data at A of the form (0, F,,, 0, £,). This
subspace is closed under the conformal Killing
bracket { , }, [Eq. (3)]:

{(0, F“b’ 0! Iga)’ (01 2Faby 03 g{a)}A

:(O’ fab’ 07 Iga)
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na =K F e 4)

—FF o and B =EnF
Furthermore, the bracket { , }, on this subspace is

a Lie bracket: Commutation relations (4) are precisely
the same as those satisfied by the generators of
isometries in the Euclidean space. [See the expression
of Killing bracket in Eq. (1).] Finally, it is obvious
from the above discussion that there is a natural one

to one mapping from the vector space of Killing fields
on (8, h,) into the six-dimensional subspace V% of

the space V§ of conformal Killing data at A, and that
this mapping is bracket preserving. Thus, the isometry
Lie algebra of (S, h,,) is necessavily a sub-Lie algebra
of the isometyry algebra of the Euclidean 3-space.

Let us now return to Killing fields on (M, g,,)-
Let ¢* be a Killing field on (M, g,,) with the property
that / (*=Kr°. (Since / #* must itself be a Killing
field, it follows that k must be a constant on M.)
Set g¢=ne,t?, where hy, =g, + X t,, (A\==1%,)
is a natural projection operator on the 3-flat ortho-
gonal to {°, (h, on M is the pull back of the natural
metric on §.) Then, #,£°=0 and /,t°=0. Thus, £°
induces, naturally, a vector field on S which we
also denote by £9.7 It is easy to check that this £2 is
the generator of an isometry on (8, h,,); / ,,=0.
Let L denote the Lie algebra of Killing fields on
M, g,,) whose commutator with ¢ is a multiple of
19, Clearly, the quotient Q of this L by #° is itself
a Lie algebra, Furthermore, by above remarks,
there is a natural imbedding of Q into the isometry
Lie algebra of (8, &,,).

The assumption of asymptotic flatness at spatial
infinilelv constrains only the Lie algebra @; no
essential restriction is imposed by this assumption on
the structure of Killing fields on (M, g,,) whose
commutator with ( fails to be a multiple of /2. Using
the result obtained above concerning the isometry
Lie algebra of (8, k), we can conclude the following.
If (M, g,,) is asvmptotically flai at spatial infinitv,

Q is a sub-Lie algebra of the Lie algebra of Killing
fields in 1he Euclidean space, In particular, the dimen-
sion of Q can not exceed six, Q admits an Abelian Lie
ideal of dimension less than or equal to three, and the
quotient of Q by this ideal is a sub-Lie algebra of SO(3).

B. Space-times with nonzero total mass: Further
reduction of permissible isometries

Without additional restrictions on the class of
space—times being considered, we cannot hope to
obtain further constraints on Killing fields: If (M, g,,)
is flat, (S, h,,) would be isometric with the Euclidean
space and would therefore admit all six Killing fields.
What we need therefore is a condition which rules out
space—times whose asymptotic curvature “approaches
zero too fast.” A natural candidate is the following:
Demand that the total mass associated with the space—
time be nonzero. It turns out that this apparently
weak condition imposes rather severe constraints on

A. Ashtekar and A. Magnon-Ashtekar 1570



the permissible isometries; the Lie algebra Q can
now be shown to be a sub-Lie algebra of SO(3).

Let us then assume that the total mass m associated
with the space—time is nonzero. Consider on S the
scalar field 7 defined by® f=x"22*[(DA) (D) + w,w,]
where A=~ ¢, is the norm and w,=¢,, 'Vt is the
twist of the stat1onary Killing fleld Then, f| A=4m,
Thus, in a neighborhood of A in S 7 is positive.
Furthermore, since Einstein’s equatlon holds in
1I**(NN8) where N is a neighborhood of A in §
and IT is the natural projection from M to S, it follows®
that f is C* everywhere in N (including the point A).
Let £? be a Killing field on (S, #,,) representing an
element of Q. [That is, let there exist a Killing field
¢ on (M, g,,) whose commutator with /* is a muiltiple
of 1 and let £? equal” .2¢°. | Then, it follows that
L 7\‘211‘”’[(D )\)(D A +w wb] 0 on 8, and hence, [
= 2<1>f on S where & = D g“ Taking the derivative
of this equatmn and evaluatmg the result at A, one
obtams sza, n=-FmD_fl,, where K,=D,& and

F, _D[ué,,]. Thus, if the total mass assocza[ed with
the space—~time is nonzero, conformal Killing data
of E¢ at A are further constvained,
the “I(’a piece” of the data is completely determined
by the “F,, piece” and the value of D,logfat A.®
Consequently, the element of Q represented by
£2 can be now completely characterized by the value
of ﬁ[ag,,] at At If b(aé,,, |A=0, then £*=0 everywhere on
S. Since the vector space V} of second rank skew tensors
at A is only three-dimensional, we can now conclude that
if the total mass m associated with the space—time is
nonzero, the dimension of Q can not exceed three,
(Note that 1f m= 01 the left side of the equation
2fK,|,=—- F,mD, |, vanishes identically and the
fourth piece, K of the conformal Killing data of £¢
at A remains unconstramed )

How is the Lie algebra structure of Q constrained?
Let us equip the three-dimensional vector space V%
with the following bracket:

FrE

{1Fab’ ZFnb}f\zfamfmb—z o 7 mb* (5)
Then, it is obvious from Eq. (4) that the natural
imbedding of the vector space underlying Q into

V$ [which sends the element of Q represented by
the Killing field £ on (S, h,,) to the skew tensor
D[a§b1 !A] maps the Lie bracket between elements
of Q to the bracket { , }5 of Eq. (5). Note, also

that { , }5 is a Lie bracket and that (V§, { , 1)

is the Lie algebra of SO(3).

Thus, we have obtained the following result: if
M, g,,) is asymptotically flat and if the total mass
associated with it is nonzevo, Q is a sub-Lie algebra
of 8O(3). In particular, the dimension of Q is either
zero or one or three.

If Q is three-dimensional, (S, &,,) is spherically
symmetric at least in a neighborhood of A.° Denote
the three Killing fields on (8, &,,) by &, i=1,2,3,
and the corresponding Killing fields oh (M, g,,) by
£“(£‘—h “g”) " Using the fact that g" can be chosen

so that their orbits are closed on (S Ryy), it follows
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that £ must commute with #* on M. Next, using this

fact and the commutation relations of £¢, it follows
i

that £2 themselves are Killing fields on (M, g,,). Thus,

1
(M, g,,) is itself spherically symmetric and hence, by
Birkhoff’s!! theorem, isometric with the Schwarzschild
space—time in a neighborhood of infinity where
Einstein’s equation holds. Thus, we have the following
result, If a stationary space—time (M, g,,, {°) with
nonzevo total mass admits move than oneKilling field
whose commutatoy with t* is a multiple of t°, then at
least one of the following must hold: (i) g,, is
isometric to the Schwavzschild metvic outside a possible
world tube, ov, (ii) M, g,,, %) fails to be asymptotical-
Iy flat at spatial infinitv.

The fact that Q cannot be of dimension two has an
interesting consequence: An asymptotically flat
stationary space—tlime with nonzevo mass can nol be
axisymmeltvic about two distinct axes unless it has
additional isometries (e.g., spherical symmetry).
if it has no additional isometries, by Carter’s'?
theorem, each axial Killing field must commute with
the stationary Killing field and hence Q must be
two-dimensional,

For,

Note, finally, that we can classify Killing fields on
(s, hab) by their behavior near the point A at infinity,
If the second piece, F,,=D,£,,, of the conformal
Killing data (w.r.t. a rescaled metric /,,) of a Killing
field £2 on (8, 4,,) vanishes at A, the one- -parameter
family of diffeomorphisms Uenerated by g“ on § leaves
not only the point A but also the tangent space at A
invariant; its action is nontrivial only in the second
jet over A. Such a Killing field may be called a
translation. [Note also that, if D, |,=0, the norm

hqy°€° Of £2 on (8, h,,) remains bounded as one
approaches A.]If Dy £, |, #0, then, although the
action of {2 on § leaves the point A invariant, it
causes a rotation in the tangent space at A, Such a
Killing field may be called a rotation. (As one might
intuitively expect, its norm w.r.t. the metric &,,
does grow unboundedly as the point A is approached
along any smooth curve,) Note that, in this terminology,
although the notion of a “pure” translation is
meaningful, that of a “pure” rotation is not: If
F,,|,#0, the value of the fourth piece K, |, of the
conformal Killing data fails to be conformally invariant,
This is precisely the situation one expects from the
structure of the group of isometries in the Euclidean
3-space. Finally, it follows from our discussion
above that if (S, &,,) is a manifold of orbits of a
stationary space—time with nonzero mass, which is
asymptotically flat at spatial infinity, (S, #,) can not
admit a translation Killing field.

4. DISCUSSION

There exist several methods of generating new
solutions of Einstein’s equation with one or more
Killing fields. It is often the case that although one can
generate solutions with relative ease, one can not
associate any simple physical interpretation with these
solutions. A major obstacle is that it is difficult to
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decide whether or not a given solution is asymptotically
flat. Results obtained in Sec. 3 may turn out to be
especially useful in making these decisions. Indeed,
most of the new solutions obtained by these methods
are relatively rich in isometries. Hence, by examining
the isometry Lie algebras, one might be able to

draw conclusions on the agymptotic behavior of these
solutions. For example, if a given solution admits

a timelike Killing field, and, in addition, more than
one Killing field which commutes with the timelike

one, one can conclude that the solution does not
represent a new and interesting model for isolated
systems: If its total mass is nonzero, either it is
Schwarzschildean in a neighborhood of infinity or it
must fail to be asymptotically flat. Thus, results
obtained in Sec. 3 represent a curious interplay between
local and global properties of space—times,

The discussion of Sec. 3 also yields some insight
into the notion of asymptotic flatness at spatial infinity.
On the other hand, the results obtained are essentially
exhaustive: One has been able to prove most of the
properties of Killing fields that one intuitively expects
to hold in the case of stationary space—times which
are asymptotically flat at spatial infinity. Since none
of the conditions in the definition of asymptotic
flatness was introduced for the express purpose of
analyzing isometries, the fact that an exhaustive
analysis is possible, and furthermore leads to
intuitively expected results, provides a strong
support in favor of this definition. On the other hand,
every result in Sec. 3 is subject to the rather severe
restriction of stationarity., Why was this restriction
made? It is because, only in the case of stationary
space—times does one have a completely unambiguous
notion of asymptotic flatness at gpatial infinity which
is free of controversies and which does not refer to
null infinity.'® Thus, the major limitation of the
present analysis stems directly from that of the
notion of asymptotic flatness at spatial infinity itself.
One can*? similarly analyze the constraints on
isometries imposed only by asymptotic flatness at null
infinity. In this case, one does not need to restrict
oneself to stationary space-times.

Finally, we wish to emphasize that the analysis
made in Sec. 3 represents only an illustration of the
use of techniques developed in Sec. 2 to a case of
interest in general relativity; these techniques are in
fact applicable to a wide variety of situations.
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’Let us assume that there exists a point p at which the »
given Killing fields span a m flat with m <n. Then, there
must exist = (n — m) independent Killing fields whose data at
p is of the type (0, F,). Using the fact that the » Killing
fields commute and the first piece of the Killing data in the
expression of the bracket, [, ]1,, hetween two data, it follows
that >3 and n >4, Let us now assume that » >4 and that the
metric g, is positive definite. Then, again using the expres-

sion of the bracket, [, ], it is easy to show that the Lie alge-
bra of the # Killing fields (whose data at p is of the type

(0, F)l is necessarily a sub-Lie algebra of SO(k). This is
however impossible since SO{k) does not admit a 4-dimen-
sional abelian sub-Lie algebra. Hence the assumption that
the Killing fields span a m flat at p with m <» is inconsistent
with the assumption that the » Killing fields commute.

‘For details, see, e.g., R. Geroch, Commun., Math. Phys.
13, 180 (1969).

4For the motivation behind the conditions in the definition as
well as for details, see R. Geroch, J. Math. Phys. 11, 2580
(1970) and R.O. Hansen, J. Math. Phys. 15, 1 (1974),
5See the first paper in Ref, 4.

fAn alternative and more analytic proof is the following.

Since 5 ¢ and 71 are smooth everywhere on (S, hy), it follows
that / 3hy, is also smooth. However, /3hg,=22"1(E"D, Q) hy,.
Next, hm._AD Q1/2 exists by 1’ Hopltal's rule and is just the
unit tangent vector to the curve of approach to A. Hence,
hmﬂﬁ“— 0. The result & = 0 follows from the fact that since
£¢ generates isometries on {8, i), /34 abl A=0.

"There is a natural isomorphism between tensor fields on 8
and tensor fields on M all of whose indices are orthogonal

to t* and whose Lie derivative by ¢ vanishes. We shall not
distinguish between tensor fields related by this isomorphism.

3 is just one of the scalars constructed out of g,, and ¢ which
could have been chosen for the present purpose. Any other
scalar f' which is C? and nonzero at A and which satisfies
sz' &K where K is C! and nonzero at A, will lead to a
constraint on the values of Fa,,l A and K | o
9See the second paper in Ref. 4.

01t suffices to show that there exists 2 neighborhood of A at no
point of which the tangent space is spanned by the three
Killing fields. Suppose no such neighborhood exists. Then,
using the fact that the Killing fields satisfy the commutation
relations of SO(3), it follows that the norm A of #* must be
constant in a neighborhood of A, and hence, that the total
mass m associated with (M, g, £*) must vanish.

11G. D. Birkhoff, Relativity and Modeyn Physics (Harvard U.P,,
Cambridge, Mass., 1923).

12, Carter, Commun. Math. Phys. 17, 233 (1970).

1311 the nonstationary context, two possibilities present them-
selves: One might continue to use a “three-dimensional”
notion of asymptotic flatness at spatial infinity, replacing the
manifold of orbits 8 by a spacelike Cauchy surface, or,
one might formulate the notion of asymptotic flatness in a
completely new “four-dimensional” spirit. If § is replaced by
a Cauchy surface, the rescaled metric 2, cannot be C~ at
A and there is some controversy about the precise degree of
differentiability that one can demand. Also the question of
uniqueness of the conformal completion is still open. In any
case, the “four-dimensional” approaches appear to be more
promising if one is interested in analyzing isometries of
space—time as a whole. In particular, when technicalities
concerning Sommers’ (“four-dimensional”) definition of
asymptotic flatness are settled, making his boundary “Psi”
completely unambiguous, one might be able to generalize
the present analysis of isometries o nonstationary space—
times. (See P.D. Sommers, J. Math. Phys. 19, 549 (1978).

154 Aghtekar and B.C. Xanthopoulos, “Isometrics compat-
ible with asymptotic flatness at null infinity: A complete
description, ”” (to appear in J. Math. Phys.}.
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The separability of the sine-Gordon equation (SGE) is defined and studied in detail. We find a general
class of dependent-variable transformations under which the SGE is separable. This class may be reduced
to a two-parameter generalization of the usual transformation adopted, by requiring the transformations to
reduce to the identity in the linear limit of the SGE (i.e., the Klein—-Gordon equation). The method

developed for studying the separability of the SGE is then applied to more general quasilinear equations
and a discussion of the limitations of the method, and of separable solutions in general, is also given.

1. INTRODUCTION

Interest in nonlinear or, to be more precise, quasi-
linear wave equations has focused in recent years on
the sine-Gordon equation (SGE)

(pxx - d)tt = Sil’l¢,

where ¢(x,#) is a scalar field in one space (x) and one
time () dimension and the subscripts denote partial
derivatives of ¢ with respect to x and ¢{. The SGE is
Lorentz covariant, has a variational derivation and, as
a mathematical model describing a variety of interesting
wave and particle phenomena, has remarkable proper-
ties at both the classical and gquantum levels. There is

a vast literature on the subject and much of this can be
traced from the pellucid review articles of Barone

et al.,* Scott ef al.? and Rajaraman,?

(1.1)

Now most of the classical studies of the SGE and its
applications have concentrated, quite naturally, on the
soliton solutions and some of the associated formal
properties (infinite number of conservation laws,
Backlund transformations, inverse method of solution,
separable Hamiltonians etc.). However, the equation
also has an underlying mathematical structure which
needs to be investigated from a much wider point of
view, For example, the initial value problem for the
SGE and similar equations, such as the Korteweg—de
Vries and its modified forms, can all be solved by
linear methods using the inverse scattering formalism.
The question then arises as to whether this is merely
a technique which happens to work for these equations,
equivalent to, say, the reduction of an integral to
standard form, or does it imply some déeper struc-
ture? If the latter is true, and this seems probable, and
if, as seems likely, equations of this type are going
to play an important part in the development of non-
linear physics, then it becomes desirable to develop
a body of fundamental theory for these equations cor-
responding to that existing for, say, the linear partial
differential equations of mathematical physics. As a
possibly useful contribution to this development we
present, in this paper, a report of an attempt to for-
mulate and answer some of the questions that would
arise in such a fundamental theory. In particular, we
study the problem of the separability of the SGE and
similar nonlinear equations.

Throughout the paper we shall assume, unless other-
wise stated, that ¢(x,¢#) is a continuous map from
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(x, #) to the reals which is at least twice differentiable
with respect to both x and . The domain of ¢ is thus
the whole of IR?, while its range is, in general, the 1-
sphere (i.e., the space of real numbers modulo 27
with the usual metric).

2. SPECIFICATION OF THE PROBLEM

The question of the separability of the SGE first
arose, in a somewhat implicit manner, in a 1971 paper
by Lamb.® Lamb showed that (1.1) possesses a class of
solutions of the form

olx, 1) =4dtan { X (¥) T ()], 2.1

where the single variable functions X and T are solu-
tions of the uncoupled, ordinary differential equations

X' P=pX*+mX?+q, (2.2a)
(T'P==qT*+(m-1)T* - p. (2.2b)

The primes in (2.2) denoting ordinary derivatives while
b,q and m are arbitrary constants which may be com-
plex. For example, choosing p=¢ =0 gives single soli-
ton solutions with speed u=v{d —1,/m]).

More recently (1976), Zagrodzinski® extended Lamb’s
analysis by showing that both (1.1) and its “elliptic”
variant

¢, + b, =sing, 2.3)
when combined into one equation

¢, Tep,, =sing (e==x1), (2.4)
have solutions of the form

olx, =+ 4tan ' [X()T(D |+ (7/2)(1 - 5) (2.5)
provided that

X' =pXt+omX®+gq, (2.6a)

TP =qT*+6(1 -m)T?+p, (2.6b)

where 6 =x1 and p,q, m = C the field of complex num-
bers. Note, however, that the two different values of
6 do not give independent solutions of the SGE, and so
one can use either value to generate all the solutions.
In this paper we shall consistently use the value
6=+1.

The existence of solutions of the type (2.5) show that
the SGE and its elliptic variant are separable, not in
terms of the original dependent variable ¢, but rather,
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in terms of a new dependent variable
¢lx, 1) =tan(¢/4)

This leads us to pose the following questions:

(2.7

(1) Is the dependent variable transformation (2.7) the
only transformation of (2.4) which leads to a separable
equation for #(x,#) [i.e., one in which the functions
X( x) and T(¢) can be separated based on the assumption
that ¢(x, ) =X)T()]?

(2) If there is more than one transformation ¢ — g(4)
which leads to a separable equation for ¥, then does
this imply that the solutions (2.5) are only a subset of
the set of all solutions of (2.4) of the form ¢ =g(XT)?

Our answers to these and related questions, together
with the relevant analysis, is given below. The plan of
the rest of the paper and a summary of our main find-
ings are as follows. In Sec. 3 we develop a method
(for a limited class of equations) for deciding on
whether a given nonlinear or quasilinear partial dif-
ferential equation is separable or not. In Sec. 4 we use
this method to investigate the separability of the SGE.
We find that there is a general class of dependent vari-
able transformations, expressed in terms of Jacobian
elliptic functions,” under which the SGE is separable and
of which (2.7) is a particular example. The occurrence
of the elliptic functions is not surprising since the
genealogy of separable solutions of (2.4) begins with the
simple pendulum equation® which, of course, has
elliptic function solutions in general. The existence of
this general class of transformations leads to a wider
set of separable solutions than that given by (2.5). How-
ever, we show that this set may be restricted to a two-
parameter generalization of (2.7) by requiring that in
the linear limit of the SGE, i.e., the Klein—Gordon
equation, the transformations reduce to the identity.

In Sec. 5 we apply our method to more general quasi-
linear equations and treat, in particular, the SGE in
one time and two space dimensions. Finally, in Sec. 6,
we discuss the limitations of our method and of separ-
able solutions in general.

3. SEPARABILITY OF PARTIAL
DIFFERENTIAL EQUATIONS

Any homogeneous, linear partial differential equation
in two independent variables,

Llo(x,H]=0,

is separable providing a function f(x,#) exists such that

(3.1)

LIX)TO] = [gl) + kO, DX )T, (3.2)

where L is a linear partial differential operator and it
is assumed that ¢(x, ) =X(x) T(#).° If Eq. (3.1) has
constant coefficients, then it is separatle if f(x,#)=1.
We are not concerned here with separability criteria
depending on given initial and boundary conditions, but
only with the separability of the operator L itself.

The rule (3.2) is not readily extendible to the general
nonlinear case. For example, putting i =tan(¢,/4) in
(1.1) gives us the transformed equation

(1 4+ 83) (e = $0) = 2600, = 9,2 =0 = ¥°) (3.3)
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which is separable, according to Lamb and
Zagrodzinski, if §(x, ) =X(x)T(f), but rule (3.2) is
clearly not applicable. We thus have to look for a
general rule which can be applied at least to certain
types of nonlinear, partial differential equations.

Consider the equation

2 P)Q, Wy, Yoe) =R@), (3.4)

where o =x and/or t, ¢ =¢(x,t) and P_,Q and R are
polynomials of any given degree with each @, being a
sum of a polynomial in ¢, and a polynomial in g,,. By
hypothesis, let ¢{x,#) = X{x)T(f). Substitution in (3.4)
then leads to the equation

LPXT)Q(X'T,T'X, T"X' , X" T, T"X) = R(XT). (3.5)
n

This is, in general, an implicit relation between X, T
and their derivatives and so the linear approach breaks
down. However, if the equation is separable, we can
write X=g(x) and T=h{/), where g and /; are 1—1 and
differentiable over the domains and ranges considered.
It then follows that

X()=g"x)=g"(gX))=(g' g7 X)=g,(X) (3.6a)
and

TO=rO=nE"T)=W o' T)=h(T). (3.6b)

In general, g{x) and k() will contain more than one
arbitrary constant and so g,(x) and %, () will also con-
tain at least one arbitrary constant.

Now X’ may or may not be analytic in X over the
range considered. Similarly for 77, However, let us
assume that each can be expanded in a power series as
follows:

77— Z‘/ br Tr+o ,

r=0

X = Zé a X, (3.7)
where a,, 0, IR and X and p are possibly noninteger.

If the a,, b, exist and are finite, then Eq. (3.4) is
separable. On the other hand, if @,, b, do not exist,

are infinite, or are all identically zero, then either our
original hypothesis is incorrect and the equation is not
separable in this form, or else the trivial solution

#{x, ) =0 is the only separable solution of the equation.
If the series (3.7) terminate, they represent first-order
equations which can be solved for X(x) and T(¢). How-
ever, if the series do not terminate then the question of
uniform convergence must be looked into [i.e., the
differential equations (3.7) may exist for certain values
of X, T, but not others].

Using formal differentiation and multiplication of
power series on (3.7) and substituting into (3.4) leads
to an identity of the form

2 P(XT)
n
XQH{ 22 @XM, 25 0, T™X, DA X, > B,TWX}
r=0 rz0 r=0 r=

=R(XT), 3.8)

where the A, and B, are coefficients involving sums
and products of the original expansion parameters.
This identity then gives us a set of recurrence relations
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for the a,, b,, A, and p which, in principle, can be
solved. There are two possible results. Either we get
explicit and consistent expressions for the first-order
differential equations (3.7), in which case (3.4) is
separable, or else we are led to a contradiction and
one of our original hypotheses is false. In the latter
case the given partial differential equation may not be
separable as it stands, or else the power series ex-
pansions for the derivatives of X and T may not be
legitimate.

Example: Consider the Korteweg—de Vries (KdV)
equation

b, + Bpo, +¢.,,=0 (3=R), (3.9)

where ¢ =¢(x,t). This is not exactly of the form (3.4),
but the method is readily extendible to the case where
Q, contains ¥, ., ¥, ..., €tc. If we now assume that
¢(x,1)=X(x) T({) and carry through the procedure out-
lined above, we arrive at the ordinary differential

equations
X' =a, (3.10a)
T' = - BaT?, (3.10b)

where a is an arbitrary constant. Solving these equations
gives us the only separable solutions of the KdV equa-
tion as it stands, and these are

oly, = (x+0)/{Bl+ ),

where b and ¢ are arbitrary constants.

(3.11)

The method can also be applied to linear equations
which are separable according to rule (3.2) and this is
best illustrated by means of an example.

Example: Consider the partial differential equation
O T O, 0, =0, {3.12)

where ¢ = ¢(x,y). Let ¢ =X(x)Y(y) and, as there are
no first derivatives of X in (3.12), substitute the
expansions

:ZO(er’7 ::Z%[)TY” (3.13)
r= r=

This leads to the identity

2 aXY+20,YX {1 + El rbTY"‘} =0 (3.14)
r=0 r=0 r=

and a consistent solution of the recurrence relations
provided by this identity gives us the following pairs
of ordinary differential equations:

Y =aY, X"==a(l+a)X, (3.15a)

V=-(1+a)Y, X' =-al +a)X, (3.15b)

where a is the separation constant. Solving these equa-~
tions then leads to the usual separable solutions of
(3.12). Note that the nonlinear method, used above,
gives easier equations for X and Y (one first-order and
one second-order ordinary differential equation) than
the elementary method based on rule (3.2) (two second-
order equations), although the advantage in this case is
minimal.

The method can also be used to separate linear equa-
tions which have separable solutions, but which are not
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separable by a single application of rule (3.2). For
example, a fairly trivial equation which falls into this
category is ¢ _ + ¢  +¢  =0.

We now consider the special case of (3.4) in which the
only terms occurring in the @_are ¢, ¢,,, (¢)? and
(&, )%, , they are of the flrst degree in second de-
rivatives and not exceeding the second degree in first
derivatives. The equation then takes the form

(¢ PP )+ @ )PP () + i, Pld) + 4, Py() = R()
(3.186)

and assuming, in this instance, that (X’)? and (7’)? can
be expanded in power series in X and 7, respectively,
we arrive at the identity

XT)Z) 20, X" T2 + P, (XT) Z 2b, T X"

=0

+P (XT)Z) (F+0)a XTI + PXT) (v + p)b, T7°71X
=1

r=1 v

=R(XT). 3.17)

In this case the problem is considerably simplified.
Comparing coefficients in (3.17), it can be shown that
X and p cannot be fractional. Also, if P,(XT) contains

a constant term the series for (X')® terminates, while
if P,(XT) contains a constant term the series for (7')?
terminates. Now the SGE falls into the special category
represented by (3.16), but before we can show this we
need the following lemma.

Lemma 3.1: An equation of the form

A(bxx(x;/)+B®”(-\—5”:f(¢); (318)

where A and B are constants, is not separable as it
stands unless f(¢)=¢. a)

Proof: Bquation (3.18) is a special case of (3.186),
with slightly different notation, where P, =P,=0,
P,(¢)=A and P,(¢)=B. If we now assume separability
and expand X” and T” in terms of X and T, respective-~
ly, and expand f(XT) as a power series in X7, then the
recurrence relations obtained from the resulting
identity have a consistent solution if, and only if,
SXT)=XT .

We can now look at the SGE and its elliptic variant
as given by Eq. (2.4). If we exclude the trivial solu-
tions, ¢=2n7 (n= z), and the time-independent and
space-independent solutions for which (2.4) auto-
matically reduces to an ordinary differential equation,
then, using Lemma 3.1, we see immediately that the
equation is not separable as it stands. In order to put
it into a separable form it is necessary, as we shall
See later, to make a dependent-variable transformation.
Using the usual transformation ¢(x, ) =4 tan 'y (v, 1)
gives us an equation of the form (3.16) with eP, (¢)
=P,() =2, eP,(§) = P()=el +47), and R(¥)
= {1 - ¢*), A consistent solution of the recurrence
relations of the corresponding identity (3.17), then
leads directly to the Zagrodzinski equations (2, 6) for
real values of the parameters. However, it is a simple
matter to extend the specification of the power series
expansions to include complex coefficients as well and
hence to recover the whole set of separated equations
given by Zagrodzinski.
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4. TRANSFORMATIONS OF THE SGE WHICH LEAD
TO SEPARABLE FORMS

In the last section we studied a method for separating
(2.4) after it had been put into separable form via the
dependent-variable transformation (2.7). We now turn
our attention to the transformation itself and ask
whether there are other transformations, either of the
dependent variable or of the independent variables,
which lead to separable forms of (2.4) or is (2.7) in
some way unique? As an indication of the type of in-
formation that one can get from such an analysis con-
sider, for example, the substitution of ¢=tan(¢/2) into
(2.4). In this case the equation reduces to

A+ )@, ed,,) 2007 el B) =01 + ),

which, by the methods of Sec. 3, is not separable.
Thus, in addition to the functional form of the trans-
formation, it appears that the use of the quarter angle
is also critical,

(4.1)

Now features such as the above are best studied once
the transformations that lead to the separable forms of
(2.4) are classified. Our first task, therefore, is to
find and classify them. A useful Lemma, in this in-
stance, is the following:

Lewima 4.1 Dependent-variable transformations are
the only transformations of (2.4) which lead to separ-
able forms. 0

We imply here that there is no coordinatization of
the domain of (2.4) which will lead to a separable equa-
tion. For example, the canonical form

?p(L,n)

4 L2251 —gipg

Feam 4.2)

is not separable.

Proof: A general transformation of the independent
variables changes (2.4) into an equation with variable
coefficients, but maintains the linearity of its deriva-
tives. Thus, by a simple extension of Lemma 3.1, it is
not separable. n

The elimination of the independent-variable trans-
formations allows us to concentrate on the dependent-
variable transformations and we now state and prove a
theorem about them,

Theorem 4.1: The only dependent-variable trans-
formations which lead to separable versions of (2.4)
are necessarily of the form

In{a
¢ =g(lx,1) =2cos'sn n J), kY,
kB
where ¢ is the new dependent variable o, 5, k¢ IR ~{0}
with £ =1 and sn is a Jacobian elliptic function sine
amplitude of modulus k. 0

(4.3)

Proof: Applying the dependent-variable transforma-
tion ¢ =g(¢) to (2.4) we obtain
(U, +edy)g’ (@) + @7 +eg,2)g” () = sing(). (4.4)
We now assume that ¥ =X(x)T(f) and substitute the
series expansions (X')’=37, 2a.X" and (I')? =37, 25,77
into (4.4). This gives

1576 J. Math. Phys,, Vol. 19, No. 7, July 1978

{TZ; r(a, X™'T + ebrT"lX)} g XT)

+{)§ 2(a X"T" +€b7T’X2)}g "(XT)=sing(XT). (4.5)

Since g is a function of X7, g’, ¢” and sin g must all
be functions of X7. Thus, a necessary condition for
(4.5) to be an identity is that the coefficients of X" TV »
on the lhs are consistent with the coefficients of (XT)r
on the rhs. Hence, on eliminating the zeros on the lhs,
we get the reduced equation

BXTg'(XT)+ FX*T2e" (XT) = sing(XT), (4.6)
where 2 =2(a, +¢b,). It follows, therefore, that a
necessary condition for (4.4) to be separable is that
g(b) satisfies the ordinary differential equation

B2 g () + ¢g " ()} = sing(®). 4.7)
This is a quasilinear, variable coefficient equation for
g(@) and can be integrated in two stages. Firstly,
multiplying the equation by 2g’ turns the lhs into the
derivative of ($g’)? and hence leads to the integrated
form

(tg")P=C-(2/8) cosg, (4.8)

where C is an arbitrary constant. Next, making the
substitutions

h=cos{g'2) and z =1In{a¢)/ kP,

where k?(2 + C8°) =4, and o has been introduced to take
care of the next integration constant, reduces (4.8) to

WPR=01 =101 =k, (4.9)

which is the defining equation for the Jacobian elliptic
function sn(z, k). Working backwards through the sub-
situations then gives us Eq. (4.3) and hence completes
the proof of the theorem. .

To get the subclass of nonelliptic transformations we
have to put x=1. Then, if we set 5= —n (not necessari-
ly integral), (4.3) reduces to

&= (1/a) tan™(¢. 4}, (4.10)

which is a two-parameter generalization of (2.7). This
leads to our next theorem.

Theorem 4.2: Separating (2.4), via the dependent-
variable transformations (4.10), leads to solutions of
the form ¢ =4 tan™ (@'/"X7T), where the separating
functions X and T are solutions of the ordinary dif-
ferential equations

(X' =pXt+mX?+ q (4.11a)

and

(T = a2/ g T4+ (1 = m)T% + a2/ mp, (4.11b)

respectively, and p, g, m are arbitrary constants which
may be complex. '

Proof: This theorem looks fairly obvious and it is.
However, the proof, although straightforward, is some-
what tedious and so we shall only mention the main
steps. We start by substituting (4.10) into (4.4). This
leads to the equation
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ni{ 1+ (@l (g, +ed,,)
[+ 1@ 7+ (= 1}, +ed,?)

=21 = (ay)2/a, {4.12)

In order to eliminate terms such asy?/" we first as-
sume that ¢ =X"T" and then use the series expansions
(X')=)y%.02aX" and (T')?=37_,20, 7. This gives us an
identity in which the coefficients are independent of 7.

A consistent solution of the recurrence relations of this
identity then leads directly to Eqs. (4,11) and completes
the proof of the theorem. =

Remark: This theorem shows that the use of the gen-
eral transformation {4.10) leads to separable solutions
of (2.4) which are independent of & and n. Thus, there
is no advantage to be gained by using {4.10) rather
than its special case (2.7).

We now consider the general transformation (4.3) of
Theorem 4.1, Substituting into {4.4) and assuming that
¢=XT leads to the equation

- BXT(X'T +¢T"X)
+{8+ksnlu, k)snlu+ K, )} {(X P T +e(T X7}

=LFEX? T2 sn(u, klsn(u + K, k), (4.13)

where u=1In(w )/ k3 and K is the complete elliptic in-
tegral of the first kind. We now run into a difficulty
since the elliptic functions in {(4.13) are only analytic
about ¥ =0 if »=1. We have already dealt with this
case, hut it is interesting to see how the restriction
comes about, Suppose we assume that it is legitimate
to consider the SGE at small values of its amplitude
¢. In this case (2.4) reduces to the Klein—Gordon
equation

¢xx+€(pt£:q')’

which, of couse, is separable as it stands. However,
other separable forms of (4.14) can be obtained by
using the transformation ¢ =g(), where g is a solution
of (4.7) with sing replaced by g. Thus, if we only con-
sider those golutions of (4.7} which, in the limit of
small ¢, reduce to a solution of

BEp{g’ () + dg” (W)= g(d) {4.15)

with g{0) =0, then this immediately restricts us to the
set of nonelliptic transformations (4.10).

(4.14)

One can, of course, get elliptic transformations which
are linear in the limit of small ¢, but only if we ex-
pand about finite values of ¢, For example, by con-
sidering the Taylor series expansion of sn(u, %) about
1=K it is easy to deduce that the function ¢ = exp{a + bx
+ ¢t) leads to a transformation of this type. The re-
sulting transformation is linear in the limit of small
¢ and, for appropriate choices of the constants in-
volved, leads to traveling wave solutions of the SGE of
the form

¢==x2 cos~'sn{(3/k) v+ vE), R}, (4.16)

where »(<1) is the wave speed and y is the Lorentz
factor (1 - #?)"'/%. The waves have an amplitude of 27
and a wavelength of 4K%/y, and in the limit k=1 re-
duce to a soliton or an antisoliton. Note, however, that
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although the soliton is a limiting case of (4.16), solu-

tions with a finite wavelength (i.e., 0 <%k <1) cannot be
obtained via the Zagrodzinski prescription [Egs. (2.5)
and {2.6)]. Thus, the elliptic and nonelliptic transfor-
mations lead to different classes of solutions with only
the solitons in common.

A feature worth mentioning, in the case of the elliptic
transformation discussed above, is that the derivation
of the transformation is constructive, i.e., it leads
directly to the solution,

5. SEPARABLE SOLUTIONS OF A MORE GENERAL
EQUATION

In this section we use the previous techniques to find
solutions of the more general equation
2o, . =A9), (5.1)
izl i
whree, =+1 and ¢ is a scalar field in » dimensions.
Since this is merely an extension to » dimensions of the

equations considered in the last two sections, we shall
go through the details fairly rapidly.

Let ¢ = g(i) be a transformation of the dependent
variable in (5.1). The equation can then be written as

{i) ¢, ¢Vixi}s{' (@) +{an 65@?}&’ () =flg).

Let &(x;,...x,) =17 X, (x,) and (X])* =37 ;2a, X,”. Then,
following through the arguments which led to (4.7), we
find that a necessary condition for (5.1) to be separable

is that g(y) satisfies the ordinary differential equation

Fufe @) +og" W =Ag), (6.3)

where 2= IR. As before, this equation can be integrated
once to give

(5.2)

(Lg')P=aA+(2/8) [ fdg, (5.4)
where A is the constant of integration. Putting
xy{A+ Q) [ fdglh =hig), (5.5)

separating the variables and integrating again, leads to
the result

Ined) = | de/ny), (5.6)

where o is a second constant of integration.

In principle, (5.6) can be evaluated and the set of
required transformations, ¢ = g(¢), found for any
particular f(¢). This is best illustrated by specific
examples and we shall work through two of them after
the following theorem.

-

Theorem 5.1: One set of solutions of (5.1) is always

n
Pl e ,xn):g(exp(a-F Do my ?x ), (5.7
i=1
where
2 eimi:p'z and a= R. »

-

Pyoof: Using the transformation (5.6) on (5.1) leads
to the only available separable equation (5.2), Now let
Yy, .. .x ) =17, X, (x;) and
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(x})? =m X2, (5.8)
where i=1,...n and m, =R, and substitute into (5.2},
This gives

n
{Z e,m X, 1l Xj}g"(d')
i=1 J#
(5.9)

n
+{E N 0=,
i=1 J#i

which can be rewritten as (5.3). But, by definition,
g(¢) satisfies (5.3). Therefore (5.1) separates, via g,
into the ordinary differential equations (5.8). Solving

the set (5.8) gives us the functions
(5.10)

where the a; are integration constants, and substitution
into ¢ immediately leads to the separable solutions
(5.7) with a=3"_, ¢,. This completes the proof of the
theorem. "

X, =expla,+ m}/3x ) VWi,

Example 1: Consider the equation

Dy~ O =0°

which is a hyperbolic variant of Liouville’s equation.?®?
In this case the transformation (5.6) takes the form

£In(ay) = } dg/{[A +(2/ BDes /2, (5.12)

(5.11)

where o, A and 8 are, in principle, arbitrary. How-
ever, if we want real solutions for g(/), then we must
choose either A or % to be negative. Performing the
integral in (5,12) (which reduces to a standard form via
the substitution # = ¢f) then leads to the solutions

32 PAL/2
g@) =1n [I_{_Hzi sec? (-i “21__ In(a ‘4)))] )

for A<0, £#>0. (6.13a)
2 Al/2
g@)=1n Alpt sechz( 1n(aw)> ,
2 2
for A>0, 2<0. (5.13b)

Now, from Theorem 5.1, we see that (5.11) has the
following sets of traveling wave solutions:

d(v, ) =In{sec?[atmyx (m*~1)/2p]} +1n2, (5.14a)

o(x, ) =In{sech[as mxx (M2 +1)/%] +1n2, (5.14b)

where ¢, m =R and where, for convenience, we have
chosen |Al =4 and { #?{ =1. The waves in (5.14a) are
periodic, while those of (5.14b) are solitary. Both
solutions, however, are singular.

Example 2: Consider the SGE in two space
dimensions,

Pt d)w ~ ¢, =sing.

The transformations ¢ = g()) which lead to separable
forms of (5.15) are again those given by Eq. (4.3).
Using Theorem 5.1 then gives us the traveling wave
solutions

(5.15)

dlx,y,t)=x2cos 'sn[(¥/k){x cosb+ysind —vi), k],
(5.18)

where ¥ is the Lorentz factor, v is the wave speed and

1578 J. Math. Phys., Vol. 18, No. 7, July 1978

6 is the direction that the propagation vector makes
with the x axis. The cross sections of these waves,
taken parallel to the direction of propagation, are
identical to the one-dimensional waves of Eq. (4.16).
However, their lengths in the direction perpendicular
to motion are infinite. This means that two-dimensional
solitons, of the type given by the k=1 limit of (5.16),
are not localized entities and thus do not possess some
of the desirable properties of the corresponding one-
dimensional solutions .

Another interesting point about the two-dimensional
SGE is that it does not possess the variety of separable
solutions that exist for the one-dimensional equation.
Thus, if we let ¢(x,y, ) =X{(x)Y(y)T(t) and go through the
procedures of Sec. 3 in order to obtain the two-dimen-
sional analogs of Eqs. (2.6), we find that we get only
the degenerate cases

(X")?=mX?, (Y')2 =nY? and ("2 =pT?, (5.17)

where the constants m,n and p satisfy the relation

m +n=p=f*. Hence, the solutions given by Theorem
5.1 [of which (5.16) is an example] are the only separ-
able solutions of (5.15). This was not totally unexpected,
of course, because of the symmetry between x and v in
(5.15). However, it is unfortunate that this symmetry
is not reflected in the soliton in the sense that the
cross sections of the latter, along and perpendicular to
its motion, are so different. On the other hand, the
analysis leading to (5.17) does show that if there is a
localized soliton solution of the two~dimensional SGE,

then it is certainily not separable in terms of our defini-
tions. As to whether there is any connection between
dimensionality, localization and separability in the case
of soliton solutions of the SGE is a question that might
be worth investigating.

6. CONCLUDING REMARKS

We have defined and studied, in some detail, the
separability and the existence of separable solutions of
the SGE and similar quasilinear partial differential
equations. The method we have used is to first make a
dependent-variable transformation which reduces the
original equation to a separable form, and then assume
power series expansions for the derivatives of the
separating functions, in terms of the functions them-
selves, in order to further reduce the separable form
to an identity; the latter operation being somewhat
reminiscent of the Frobenius method for ordinary
differential equations. A consistent solution of the re-
currence relations of this identity then gives us the
separated ordinary differential equations corresponding
to the original partial differential equation. In this
manner we have demonstrated the existence of a general
set of dependent-variable transformations which lead
to separable forms of the SGE and have used them to
discuss the existence and classification of separable
solutions of the latter. Similar results have been ob-
tained for some other quasilinear equations.

QOur analysis, however, is still in its early stages.
Thus, we have not discussed the “difficult” cases, nor
have we considered the important questions of initial
and boundary conditions. Now, it is well-known that
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boundary conditions are intimately connected with the
separable solutions of linear partial differential equa-
tions.? Thus, it is almost certain that boundary condi-
tions will play a prominent role in the separability
problems of the nonlinear theory. On the other hand, in
linear theory we have a principle of superposition, and
the corresponding freedom to use Fourier series expan-
sion enables us to fit a great variety of initial condi-
tions either exactly or approximately. In the nonlinear
theory we have no superposition principle and so the
problem is that much harder.

As far as the separable solutions themeselves are
concerned, they do, of course, form only a subset of
the set of all solutions, Nevertheless, they do give some
insight into the structure of the differential equation
and into the structure and formation of soliton solutions.
For example, in the case of the one-dimensional SGE,
both the one-soliton and two-soliton solutions are
separable, but the three-soliton solution is not. Where-
as, for the two-dimensional SGE, only the single-soliton
solution is separable, Furthermore, the dependent-
variable transformation used used to obtain separable
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forms of the SGE are often the ones used to express
more general solutions.?
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Existence of instantaneous Cauchy surfaces?®
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Several properties of instantaneous Cauchy surfaces are obtained. It is shown that a strongly causal
spacetime admits an instantaneous Cauchy surface through each of its points, that there is a close and
reversible relationship between these surfaces and maximal open globally hyperbolic subsets, that every
instantaneous Cauchy surface is contained in a maximal instantaneous Cauchy surface, and that the latter
surface is a maximal achronal surface which separates spacetime into past, present, and future. Some
other properties of instantaneous Cauchy surfaces are discussed along with a refinement of an earlier

topology change property.

1. INTRODUCTION

The preceding paper defined an instantaneous Cauchy
surface to be an achronal set whose interior Cauchy
development is maximal on the family of all such sets.!
Several examples were considered, and it was argued
that instantaneous Cauchy surfaces may have an im-
portant role to play in analyzing the structure of sin-
gular spacetimes and quantizing fields on such
spacetimes.

Since one can construct spacetimes in which there
are no nonempty achronal sets whatsoever, some
restriction on the causal structure of spacetime is
necessary if the spacetime is to admit the existence of
an instantaneous Cauchy surface. The main result of
this paper is an existence theorem which shows that
instantaneous Cauchy surfaces can be found in all but
the most pathological spacetimes.

In Sec. II we establish our notation and collect some
well-known facts about globally hyperbolic sets. The
main existence theorem is stated and proved in Sec.

III. Section IV considers the properties of maximal and
minimal instantaneous Cauchy surfaces. It is found, for
example, that any instantaneous Cauchy surface is con-
tained in a maximal instantaneous Cauchy surface which
is also a maximal achronal set. Section V shows that a
maximal instantaneous Cauchy surface is edgeless and

that whenever two such surfaces have the same interior
Cauchy development, they are homeomorphic.

1l. NOTATION AND USEFUL FACTS

The notation of this paper is chosen to be compatible
with the monograph by Hawking and Ellis® and also with
the monograph Technigues of Diffevential Topology by
Penrose.? One slight departure from the Hawking and
Ellis notation is that we only require Cauchy surfaces
and partial Cauchy surfaces to be achronal instead of
acausal. Domains of dependence, determined by time-
like curves, are denoted by D(S) as in Hawking and
Ellis. The set that we almost always use is the in-
terior Cauchy development intD(S) so that it is con-
venient to denote this set by D°(S).

a)gupported in part by the National Science Foundation Grant
No, MPS 74-18386~A01,
bigupported in part by the Alfred P. Sloan Foundation,
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Global hyperbolicity can be defined in several ways.
We use the definition in Hawking and Ellis®:

Definition: A set N is said to be globally hyperbolic
if the strong causality assumption holds on N and if,
for any two points p,g € N, J*(p) 1 J(g) is compact and
contained in N.

With this definition, the global hyperbolicity of N is
tied to the causal structure of the whole spacetime M.
In particular, we will use the following obvious con-
sequence of this definition:

(GHO) If N is a globally hyperbolic subset of a space-
time M and S is achronal relative to N, then S is
achronal relative to M.

We list below some additional properties of Cauchy
developments and globally hyperbolic sets which will
be used in what follows. We assume that M is a time-
orientable spacetime.

(GH1) For every achronal set S, LU*(S) is globally
hyperbolic.*

(GH2) Each open globally hyperbolic set H, considered
as a spacetime, contains a Cauchy surface S.° In H,
H=D°S). In M, H: L°(S).

(GH3) Each open globally hyperbolic set can be
foliated by the achronal sets of (GH2).

(GH4) If H is open and globally hyperbolic, and S and
S’ are as in (GH2), then S and S’ are homeomorphic.”

fil. EXISTENCE

Definition: An achronal set S is an inslanlancous
Canchy surface if and only if, for any achronal set S,

D°(S) <. LP(S') implies DP(S) = L°(S’).

Theovem 1. If M is a strongly causal spacetime and
p is a point of M, then there is an instantaneous Cauchy
surface that includes p.

Proof: Let G, be the family of all open globally hyper-
bolic subsets of M containing p. By strong causality, p
has an open globally hyperbolic neighborhood so that
Gp is not empty. Partially order G, by set inclusion and
let {G,la € A} be a totally ordered subfamily of G,.

The set U {G,} is open and globally hyperbolic and is
an upper bound for the subfamily {G,}. By Zorn’s
lemma there exists a maximal member H of the family
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FIG. 1. A nonmaximal instan-
taneous Cauchy surface, The
example consigts of two-di-
mensional Minkowski space-
time with two sequences of
points removed so that their
»  limit points (also removed)
are null related. The surface
S is an instantaneous Cauchy
surface because the interior
Cauchy development of any
other achronal surface will
necessarily encounter one of
the removed points before it
can include the development of
S. Larger instantaneous
Cauchy surfaces can be ob-~
tained by adjoining to S points
on the null line (dotted) that
connects the limit points,
These additional points do not
contribute to the interior of
the Cauchy development at all,
Notice that the resulting
larger instantaneous Cauchy
surfaces may not be submani-
folds because they can include
isolated points,

G,. Now p€ H, so by (GH3) and (GHO) we can find an
achronal set S through p such that H < D°(S). Since H is
maximal D°(S)=H and S is the desired instantaneous
Cauchy surface through the point p.

Rewmark: A slight weakening of both the hypothesis
and the conclusion of the existence theorem is possible.
In a past(future)-distinguishing spacetime, one can
show that an instantaneous Cauchy surface passes
through each neighborhood of each point.? The method of
proof is the same as above except for one point: It
must be established that each neighborhood is inter-
sected by an open globally hyperbolic set. This point
can be established by a straightforward local
construction,

In the process of proving the existence theorem, a
connection between instantaneous Cauchy surfaces and
maximal open globally hyperbolic sets has been inti-
mated. In fact, for some purposes, one may be more
interested in the maximal open globally hyperbolic sub-
sets of a spacetime than in the instantaneous Cauchy
surfaces. For this reason, it is useful to state the
exact nature of this connection.

Proposition 1: An achronal set S is an instantaneous
Cauchy surface if and only if D°(S) is a maximal open
globally hyperbolic set.

Proof: Suppose that H is an open globally hyperbolic
set such that D°(S)C H. By (GHO) and (GH2) one can find
some achronal set S’ with D°(S)C HC D°(S’). If S is an
instantaneous Cauchy surface, then D°(S)=H and D°(S)
is a maximal open globally hyperbolic set.

From this result and (GH3), we see that the existence
of instantanecus Cauchy surfaces is equivalent to the
existence of maximal open globally hyperbolic subsets.
We now restate the existence theorem in terms of
these subsets.
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Proposition 2: A strongly causal spacetime is covered
by its maximal open globally hyperbolic subsets.

IV. MAXIMAL AND MINIMAL INSTANTANEOUS
CAUCHY SURFACES

If one is really interested in the “best possible
achronal sets” in a spacetime, then the instantaneous
Cauchy surfaces are not the last word. It is possible
for one instantaneous Cauchy surface to be a proper
subset of another. Figure 1 shows a simple example of
this behavior. The interesting achronal sets, we find,
are the maximal, S_, , and the minimal, S, , in-
stantaneous Cauchy surfaces. These sets are easily con-
structed from a given instantaneous Cauchy surface.

Proposition 3: If M is a strongly causal spacetime
and S is an instantaneous Cauchy surface in M, then

(A) S,,,=N4S,, where {S,} is the set of instantaneous
Cauchy surfaces contained in S.
(B) S, =~1(S), where I(S):=I"(S) - I (S).

Proof. (A) First we show that 1,5, is an instantaneous
Cauchy surface. For each o, S S and so D°(S,)
C 1°(S). Since each S, and S is an instantaneous Cauchy
surface, D%S,) and D°(S) are maximal globally hyper-
bolic sets by Proposition 1. Thus D°(S, )= D°(S) for each
o, Consequently, if p € L°(S), every timelike curve
through p must intersect S, for each a and so every
timelike curve through p must intersect ™ S, . It follows
then that D°(S)< D°(",S,) and so from the maximality
of D°(S), D°(8)=D"("n,S,). Thus D°(:,S,) is maximal,
and since 1,5, CS, the set S is achronal. A final
application of Proposition 1 completes the proof that
N,S, is an instantaneous Cauchy surface. Clearly it is
the smallest contained in S.

(B) Since S is achronal, S ~/(S). In fact, one finds
that ~I(S) is itself an achronal set. To show this,
suppose that ~I(S) is not achronal and choose two points,
p < g in ~I(S). By strong causality, there exists some
open globally hyperbolic subset NC I*(p)N I"(g) < ~I(S).
By (GHO) and (GH2), there exists some achronal set
AS C N such that N Z D°(AS). Since AS< ~I(S), the set
SU AS is achronal, Moreover, D°(S i AS) contains N and
so is strictly larger than D°(S). This conclusion leads
to a contradiction since, by Proposition 1, D°(S) is
maximal. Thus ~I(S) is an achronal set containing S and
so is an instantaneous Cauchy surface. It is not difficult
to see that ~I(S) is the largest achronal set containing
S (and hence the largest instantaneous Cauchy surface
containing S); for any extension of ~I(S) would contain
points in I(S) and would not be achronal.

Some further properties of S, and S, are needed
later. It is useful to state these properties explicitly.

Proposition 4: If S is an instantaneous Cauchy sur-
face in a strongly causal spacetime M and PESpins
then every timelike curve through p intersects D°(Sy,).

Proof: First note that for every p<S_, either
I(p) " D°(S) # @ or I-(p) N D°(S) #@. Otherwise one has
DO(8) = L°(S,,,) =D°S,.,, —{p}) and S, —{p} is an in-
stantaneous Cauchy surface, contradicting the mini-
mality of S_, .
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If I*(p) " D°(S) # O, then for any ¢ = I'{p)r: D°(S),
I(g) " I'(p) C D°(S). Any timelike curve through p must
intersect I"(g) N I*(p) and so must intersect D°(S).
Finally, if I"(p) " L°(S) #®, dual arguments complete
the proof.

Proposition 5 1(S,, ) U S, =I"(D°(S)U I-(D°(S)).

Proof: If p€ IS, ) S, , then, for some timelike
curve ¥ through p, ¥N S, #@. By the previous proposi-
tion, ¥N LP(S)# ¢. Thus, either p=I*(L°(S)) or p
=1 (D°(9)), and consequently I(S, )US, , CI*(D(S))

v I (D°(S)).

To show the reverse inclusion, suppose p € I*(D°(S))
Then for some g € D°(S) and some timelike curve v, p
and g are respectively the future and past end points of
y. Let ¥’ be any inextendible timelike curve containing
v. Since ¥’ contains ¢ D°(S_, )=D"(S), the set 7’
NS, mustbe nonempty. Since p lies on a timelike
curve that intersects S_; , we have p=I(S,; JUS ..

A similar argument can be made for p= I"(D°(S)) so that
FDYS)) U PN SIS ) < S

An immediate consequence of Propositions 3 and 5 is

Smax = Smta =~ S i) < Spuipl =~ 1SN < 1 (D°(5))]
for any instantaneous Cauchy surface S. It is now easy
to see that if S and S’ are equivalent in the sense of
having the same interior Cauchy development, then
Sax = Smia =Smax ~ Smia- U S and S” are equivalent in-
stantaneous Cauchy surfaces, then S_  and S ar
homeomorphic if and only if S, and S/, are homeo-
morphic. We turn to this question in the next section.

V. REFINEMENT OF THE TOPOLOGY CHANGE
PROPERTY

Consider the topology change property (GH4) of
Cauchy surfaces. In order to apply this result to in-
stantaneous Cauchy surfaces in a straightforward way,
the previous paper required one of the surfaces to be
acausal so that it would lie in its interior Cauchy de-
velopment. Here we show how this restriction can be
removed.

Theovem 2: If S and S’ are instantaneous Cauchy
surfaces in a strongly causal spacetime and D°(S)
=D°(S'), then S_, is homeomorphic to S;; and S_., is
homeomorphic to 87,

Proof. From the comments following Proposition 5, it
is sufficient to prove that S_; is homeomorphic to
S ., The property (GH4) cannot be applied directly be-
cause of the possibility that S ; and S ; do not lie
entirely within D°(S). As in the proofss' of properties
(GH2)—(GH4), let v be a congruence of inextendible
timelike curves and use this congruence to produce a
map f:S_,,~ S;

min®

First, show that the map f is defined on S and is one-
to-one and onto. For convenience define K :=L°(S).
It follows from Proposition 4 that any timelike curve
¥, € ¥ through p= S, enters K and so intersects S|,
at a point f(p). Thus y defines a one-to-one f:S_,,
. Similarly, ¥ defines a one-to-one map g:S;
- Sm in such that g=f-! so that f is onto,
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Next, show that fis continuous by expressing it
locally as a composition of continuous maps. Choose
any p€S_. and choose neighborhoods U of p and U
of g: _f([J) with compact closures. Choose a point
= v," U, and a point Gy, " U . From (GH3) we can
pick achronal sets S and S' in K such that p & S j=8,
and D°()=D°E") =K. The congruence y defmes the
one- to -one and onto maps f - b f S~ 5', and
Foaa S’—-S’ . SO that f=7_ f fmin The funct1onf
will be contmuous at p if the sequence {q q,= mln(p )
converges to ¢ whenever the sequence {p"} in SmhI con-
verges to p. If any subsequence of {qn} converges to a
point ¢’ € U, but ¢’ #§, then ¢’ €y and either ¢’ = I*(7)
orq’ < '(5). Suppose ¢ €I*(7). But then I*(7) is a
neighborhood of ¢’ and must contain Z] for sufficiently
large n. One then has §, < [*(g) which contradicts the
achronality of S, The same argument holds if ¢’ =I(3).
If {qn} contains a subsequence {g,,} = M - U,, then the
timelike curves of ¥ which join p,, and g, must inter-
sect U, As U is compact, the boundary U is also com-
pact and this sequence of intersections will have a
cluster point ¢’. One can then apply the previous argu-
ment to contradict the achronality of §, Thus Jata 18
continuous. This same argument can also be used to
show that /7, is continuous. Since (GH4) implies the
continuity of 7, we have established that f is continuous.

A time reversal of the preceding argument shows that
f~tis also continuous so that f is continuous and open
and therefore a homeomorphism.

V1. DISCUSSION

Proposition 1 establishes a close and reversible con-
nection between instantaneous Cauchy surfaces and
maximal open globally hyperbolic sets. Theorem 1
shows that instantaneous Cauchy surfaces are plentiful
in most of the spacetimes that one would wish to con-
sider. Proposition 3 connects these instantaneous
Cauchy surfaces to minimal and maximal instantaneous
Cauchy surfaces.

For most purposes, it is the minimal and maximal
instantaneous Cauchy surfaces that are of interest.
Propositions 3—5 spell out a variety of properties of
these surfaces. From part (B) of Proposition 3, a
maximal instantaneous Cauchy surface can be thought
of as a “global instant of time” because it divides
spacetime into past, present, and future (compact
partial Cauchy surfaces in a causally continuous space-
time share this same property®). Such a surface is an
achronal boundary and is therefore a closed, edgeless,
imbedded C*- three-dimensional submanifold of space-
time—a partial Cauchy surface. Proposition 4 shows
that a minimal instantaneous Cauchy surface has an
important global property in common with a spacelike
hypersurface. However, it should be noticed that S,
is not, in general, an acausal or spacelike surface and
can have null generators. Proposition 5 and the com-
ments that follow it can be used to deduce the proper-
ties of S =S, The property that has been used in
this paper is the fact that this set depends only on the
maximal open globally hyperbolic set D°(S) and not on
the particular instantaneous Cauchy surface S that
generates it. It is also quite easy to show that S,

— S, 18 generated by a congruence of null geodesics.
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Theorem 2 requires considerable work to extend
the property (GH4), but this work is necessary because
one often prefers to give data on null hypersurfaces
which need not be contained in their own Cauchy de-

velopments. As in the previous paper,® the most natural

way to interpret Theorem 2 is to give various negative
statements of it. Thus, we find that topology changes
in maximal instantaneous Cauchy surfaces cannot occur
through the regular evolution of hyperbolic field equa-
tions. If two such surfaces are not homeomorphic, then
they must have distinct Cauchy developments and the
spacetime cannot be globally hyperbolic.
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Discrete finite nilpotent Lie analogs: New models for
unified gauge field theory

Karl Kornacker

Department of Biophysics, The Ohio State University, Columbus, Ohio 43210
(Received 2 September 1977)

To each finite dimensional real Lie algebra with integer structure constants there corresponds a countable
family of discrete finite nilpotent Lie analogs. Each finite Lie analog maps exponentially onto a finite

unipotent group G, and is isomorphic to the Lie algebra of G. Reformulation of quantum field theory in
discrete finite form, utilizing nilpotent Lie analogs, should elminate all divergence problems even though
some non-Abelian gauge symmetry may not be spontaneously broken. Preliminary results in the new finite
representation theory indicate that a natural hierarchy of spontaneously broken symmetries can arise from
a single unbroken non-Abelian gauge symmetry, and suggest the possibility of a new unified group

theoretic interpretation for hadron colors and flavors.

1. INTRODUCTION

Clearly: (a) no experiment can determine whether
physical space—time is actually discrete or continuous,
finite or infinite; (b) if physical space—time is actually
discrete, then the use of continuum models may un-
necessarily complicate the theory of extremely micro-
scopic phenomena such as quark confinement; (c) if
physical space—time is actually finite, then the use of
unbounded position operators may unnecessarily com-
plicate the quantum dynamical theory of extremely
macroscopic phenomena such as cosmic evolution, and
may cause spurious infrared divergence problems;

(d) systematic theoretical investigation of (b) and (c)
requires a generalization of quantum field theory which
is meaningful for some set of discrete finite space—
time models, This paper presents a new mathematical
approach to problem (d),

Three difficulties hinder any attempt to reformulate
quantum field theory in discrete finite form: (1) quanti-
tative measurements are commonly represented by ele-
ments of an infinite number field; (2) no finite number
field is algebraically closed; (3) there is no known dis-
crete finite analog of the exponential map from simple
real Lie algebras onto analytic groups. ! The first two
difficulties are readily circumvented. The third, how-
ever, prevents the construction of discrete finite gauge
field theories. For this reason prior studies of discrete
finite space—time models® have contributed little toward
the generalization of quantum field theory. In this paper
we solve problem (3) and briefly consider some of the
unigue mathematical advantages which may be obtained
by reformulating quantum field theories in discrete
finite form. Specific models utilizing the new finite
formalism will be discussed elsewhere,

H. DISCRETE FINITE NILPOTENT LIE ANALOGS

Some authors have proposed that the finite Galois
fields GF(p?) of prime characteristic p=3 (mod 4)
should be regarded as discrete finite analogs of the
complex plane. > We cannot accept such a proposal for
the following reason:

Proposition I: Let K be a finite field of prime charac-
teristic p. Let &: K— K satisfy £ (0)=1, Then ¢ (nx)
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= (&))" tor all positive integers n only if &(x)=1.

Corollary: It is impossible to construct a nontrivial
group homomorphism from an additive subgroup of K
onto a multiplicative subgroup of K,

Proof: Tt is known that v*"=x for all x = K and some
positive integer », Therefore the given conditions on &

imply 1 =£0)=¢ (P = (WP =),

Throughout the remainder of this paper we let R
denote a finite associative ring with unity 1z and arbi-
trary fixed prime characteristic p = 3; let C(R) denote
the center of R; let Z, denote the subring (prime field)
generated by 1p; let R[x] denote the ring of polynomials
in a single algebraically independent indeterminate over
R; let £: R[x]~ R[x] denote the truncated exponential
map defined by £ (@) =1+521 ©*/st; let /dx:

R{x]— R{x] denote the R-linear derivation defined by
d/dx(x)=1g; let #: R[x]) - R[£]: x ~ £ denote a fixed
unitary R-linear homomorphism; let )+ R[£] — R[{]
and exp: R[£] - R[£] denote maps defined by the com-
mutative diagrams

R[\x]:‘_/ﬂ‘.}z[(l R[a\c];,R[jx]
R[g]—R[s] R[£]Z2 Rlt),

We say that /) is faithful if and only if the restricted
map /) £Z, ] Z,|£] is injective, We say that the ele-
ment < C(R) is an admissible value of & if and only

if (¢~ n) R{£] is a proper ideal in R[¢]. I 7 is an admis-
sible value of £ in C(R) then we let {),: R[]~ R: §—n
denote the R-linear homomorphism with kernel

(¢~ m R[&], and let /), denote the tangent vector at n
defined as the composite map { ),°/).

Proposition II uniquely characterizes the unitary R-
linear homomorphism #/: R[x]— R[£] which is most
suitable for use in discrete finite quantum field theory,

Proposition IT; /) is faithful if and only if the kernel
of // is x?R|x],

Proof (Sketch): I /) is faithful then it follows that
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g™ ¢ Z, and £ =0; therefore, the kernel of // is
x*Rlx]. The converse follows by direct computation,

Proposition I and its corollary support the choice of
# according to Proposition II,

Proposition HI: K the kernel of / is x?R[x] then the
following statements are equivalent for e C(R):

1, 77 is an admissible value of &;
2. Nlexp(s)) =nexp(nt);

3. *=0.

Covollary: K the kernel of // is ¥*R[x] and ne C(R) is
an admissible value of £ then the restricted map
exp: 1Z,[n) —~ Z,[n) defines a group isomorphism from
an additive group of admissible values of £ onéo a
multiplicative group of automorphisms on nZ,[1].

Proof (Sketch): (1) == 0P ={H,= @); @)=>(£~-n)
=0=> (1); (3) = (2) by direct computation; (2)=> n£*"!
=0-= /)o-l (&™) =0=- (3). The conditions given in the
corollary imply n* =0 (by Proposition I}, K 2 <+ <p
is the lowest power of ¢ <7Z,[n] such that ¢”=0 then
" ={exp(®)- 10" It follows that exp(p) =13 if
and only if » =0, The rest of the corollary follows by
direct computation,

Proposition IV uniquely characterizes the involutive
automorphism C: Z,[n] — Z,[1].

Proposition IV: There exists a unique involutive auto-
morphism (1 Z,[n] — Z,[n] and C(n) =-

Proof (Sketch): From v =0 it follows that every
automorphism on Zp[n] is defined by n— a7n for some
nonzero ¢ € Z,. For an involutive automorphism at
=1z#a and therefore a=~ 15,

Throughout the remainder of this paper we adopt the
following conventions and notation: /4 is fixed as the
unique R-linear homomorphism on R[x] with kernel
x?R[x]; n,< C(R) satisfies 77=0 and 7" #0 for § <7 <p,

Now consider the countable dense ring of complex
numbers Z[ip!/?] where Z denotes the ring of rational
integers, Clearly there is a natural homomorphism:
z[ip'/?]—~ Z [n,] defined by the commutative diagram

Z[ip“”]MZ,,l{np]
\Z,[n,]

Furthermore the involutive automorphism (, acting
on Z,[n,] satisfies the commutative diagram

(modm;).

Z{z’p“’]*—“Z[ip”’]
]
Zﬁ[nf] - Zp[nr] ’

where * denotes ordinary complex conjugation, There-
fore, we call 7, the (p,7) image of ip!/?, and identify
C, as the (p,7) analog of complex conjugation.

In view of these observations we identify nZZ,[nZ],
the set of all “real” (invariant under (,) admissible
values of £ in Z,[n,], as the (p,7) analog of the veal
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axis, The (p,*) analog of the complex plane is then the
n,Z [n2] module generated by {1, n,}, or equivalently
nZz, [n,,] It follows that n2Z,[n2] is the (p,7) analog of
the imaginary axis,

Every element of the multiplicative unitary group
exp(n?Z [n2]) can be written as {exp(n,t), for some
bz [n,] Also 1, =/),(exp(®,£)), so we may, regard
1, as the infinitesimal generator of exp(nr ’[n,]) 1t
follows that the Lie algebra of exp(niZ [n,]) is isomor-
phic to niZ, [n%]. Therefore we regard exp (4 [n,]) as
the (p,7) analog of U(1).

The following definitions together with proposition V
generalize the preceding constructions to include (p,#)
analogs of noncommutative real Lie algebras.

Definition: Let L be an abstract real »-dimensional
Lie algebra with basis {3,}{ chosen so that all structure
constants of L are integers. Such a basis for L always
exists if L is compact, but may also exist when Lis
noncompact, Let L denote the Lie ring generated by
Do, Let L] [n,) denote the tensor product Z Lln,l@ L with
Lie product defined by [¢® A, ¢’ )\’] ¢>¢> & [x, 2], We
call the finite nilpotent Lie algebra v L[ ]
= n/,[v;d@ L the abstract p analog of L,

Definition: Let M [n,] denote the semilocal ring of
matrices of degree s over the local® commutative ring
Z,(n,). Let pg L{n,) = M[n,) be a Z,[n,}-linear repre-
sentatmn such that ps(1z 2 X, 270 705(1R® x) ps(le\ A)
-p, g2 1) p,Lgr) forall x, M« L, Let p
L{n,] —~ M[n,]| denote the representatlon defined by the
commutative diagram

L{n,] 20,

\p;” l (modmy) .
‘1’13{777]

Then we call p;” (2L[m3]) a (p,7) analog of L. Note
that the value of the cufoff pavameter v is determined
by the choice of representation,

P?O/Joszlzon V: Let R=Mn,]. Then the image of
exp e p(" n [772] R is a finite unipotent group whose

Lie aloebra is isomorphic to p(")(niL[nﬂ)a

Proof (Sketch): The Baker— Campbell— Hausdorff
theorem? assures that the specified image is a unipotent
group. The rest of the proposition is proved by para-
phrasing standard arguments, ®

The remainder of this section deals with representa-
tion theory, We identify M [7,] with the ring of endo-
morphisms on a free Z,[n,| module F(,s) whose basis
contains s elements, We say that a subset T of 1,7,
is reducible over F(»,s) if and only if F(»,s) contains
a free proper submodule F(r,s’), 1 <s’ <s, which is
invariant under every element of T; otherwise we say
that 7 is irreducible over F(r,s). Clearly the reduci-
bility of 7T is independent of the choice of F(r,s), For
s=m we choose F(p,m) to be the free Z,{n,] module
with basis {1z 2 2,}T and let p,, denote the regular
(adjoint) representation defined by p,,(1 g &A,): F(p, m)
= F{p,m): L@y ~1p2 X, 20l
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Proposition VI Let Z,® L be a simple non-Abelian
Lie algebra, Then

(1) p,, is faithful;

@) p,7 (nEL[n2)) is irreducible if and only if = 5;

(3) exp°p,r"(m3L[n?]) is isomorphic to a direct product

of m inequivalent (p,7) analogs of U(1) if and only if
=4,

Proof (Sketeh): (1) and (2) are elementary counse-
quences of the definitions. For » =4 there exists a Lie
isomorphism p ¥’ =37 0, (direct) where the skew-
Hermitian singlet representation 0,: L{n,] — My[n,] is
defined by 0,(d® Ay = 6 7, (mod7}). ¥ =3 then
72Z,[n,] contains no non-zero skew- Hermitian elements,
while if » = 5 then VI. 2 precludes a decomposition of

)
Pm o

Remark: 1t is well known that if L is simple then
Z,® L is simple for all p sufficiently large,

Finally, let L’ be a non-Abelian Lie subring of L,
Let F(p,m’) denote the free submodule of F(p,m)
spanned by 1z ® L', Let G(p,m’) denote the symmetry
group of F(p,m’), that is, the subgroup of Lie auto-
morphisms on F(p,m) which leave F(p,m') invariant,
Clearly G(p, m’) contains a subgroup of inner auto-
morphisms isomorphic to exp e p,,(nEL/[n%]). The group
G(p,m’) may be regarded as the spontaneously broken
symmetry group corresponding to the reduced skew-
Hermitian Abelian multiplet representation p{¥: L[7,]
— M,.[n,] which is injective on 1z ® L/, No comparable
model for spontaneously broken symmetries is possible
if representation theory is limited to the representa-
tions of L, because simple non-Abelian Lie algebras
cannot have nontrivial Abelian representations,

1. APPLICATIONS TO UNIFIED GAUGE FIELD THEORY

K the observed elementary hadrons are classified
into multiplets by standard group theoretic methods,
then it appears that only 2 small number of mathemati-
cally possible multiplets are realized in nature, € This
confinement phenomenon, which includes quark confine-
ment, is now generally thought to signify that all ob-
served hadrons correspond to (colorless, flavored)
SU(1)co1qc Singlets for some n> 3. The consensus is that
color confinement will eventually be deduced from a
unified gauge field theory carrying exact (not spon-
taneously broken) SU(n),,,, sSymmetry.” Little pro-
gress on this problem has been made, however, be-
cause there is no known method for constructing
bounded solutions to quantum field equations which are
invariant under an exact non-Abelian gauge group.
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Some suggestive results have been obtained with the aid
of discrete (infinite) lattice models using finite-differ-
ence methods, ® but such approaches leave infrared
divergence problems unresolved,

Reformulation of exact color gauge field theories in
discrete finite form, utilizing finite nilpotent Lie
analogs, should produce several unique mathematical
advantages: first, and perhaps most important, all
divergence problems should be eliminated without the
need for special renormalization procedures; second,
all cutoffs should enter through representation theory
without the need for special approximations; third, the
singlet representations of the abstract non-Abelian
color gauge group should be naturally distinguished,
possibly suggesting a new unified group theoretic inter-
pretation for color and flavor; and fourth, there should
be a natural hierarchy of spontaneously broken gauge
symmetries corresponding to the symmetry subgroups
of the full automorphism group for the abstract color
gauge group, possibly suggesting a new unified group
theoretic interpretation for exact and spontaneously
broken gauge symmetries (cf. Ref, 9), These observa-
tions indicate that further studies and applications of
finite nilpotent Lie analogs may accelerate progress
toward the solution of fundamental problems in quantum
field theory,
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On a possible experiment to evaluate the validity of the
one-speed or constant cross section model of the neutron-

transport equation
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The inverse problem for a half-space is solved (for isotropic scattering) to yield results that suggest an
idealized experiment that could be used to evaluate in 2 new way the validity of the one-speed or constant

cross section model of the neutron-transport equation.

INTRODUCTION

Inverse problems in the theory of neutron diffusion
have been discussed in recent years for finitels? and
infinite media. 3% Here we would like to investigate
the half-space inverse problem for the one-speed or
constant cross section model of the neutron-transport
equation and to show how the established results sug-
gest an experiment that could be used to evaluate the
isotropic-scattering model of the neutron-transport
equation.

ANALYSIS

We consider the neutron-transport equation
2 c !
g )+ 80,0 =5 f e, w0 aw, (1)
-1

where ¢{x, i) is the neutron angular flux, x is the posi-
tion variable measured in mean-free-paths, u is the
direction cosine, and

c=(vE,+3,)/Z (2)

is the mean number of secondary neutrons per colli-
sion. Traditionally for ¢ <1, we seek to solve Eq. (1)
in a semi-infinite half-space such that

(0, ) =F(u), >0 (3a)
and
¥(=, u) =0, {3b)

where F(i1) is considered given. Here we consider that
F(u) is specified, that $(0, - ), u>0, can be mea-
sured experimentally, and that we wish to determine
the mean number of secondaries c.

We know from the work of Chandrasekhar® that the
exit flux can be computed from

1
60,-w =5 [ AW FDxL w0,
0

where H(l) satisfies

c 1 dx
H(p)=1+ Eumu)fo B (5)

It is clear that we cannot readily solve Eq. (4) for ¢

Y Permanent address: Nuclear Engineering Department, N. C.
State University, Raleigh, N.C. 27607.
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since H(1) is a function of ¢. Moments of the exit dis-
tribution can be found by multiplying Eq. (4) by ¢* and
integrating over p. For example, after using Eq. (5),
we can write

Py = f01F(x)[H(x) - 1]dx, (6a)
d1:f01F(x)[—xH(x)VI—c +x]dx, (6b)

and

;Lw2:'/‘ F(x) [XH(X) (%Hﬁ-x\/l_——?) —x:’jl dx, (6¢)

0

where

Hy= f01 H(x)x*dx (Ta)
and

Vo= [ 000, = 1) p® dp. (7b)

If we consider the special case of an isotropic incident
flux, F(u)=1, then the resulting version of Eq. (8a)
yields

WY =Hy-1=@2/c)1-vi= 0)-1, ®)
which can be solved for c¢ to yield
4y

Cc= mvz . (9)
Here we use
WP = [T9(0, - ) p* du, (10)

where ¢'® (v, (1) denotes the solution of Eq. (1) corre-
sponding to F(u)=pu?,

If we now consider F(p) =y, then Egs. (6a) and (6b)
can be used with the identity®

Vi-c Hy+(c/4)H} =% (11)
to deduce

_ 4&(1)
C= '['m . (12)

In a similar manner Eqs. (6a) and (6c) and the identity’

Vi—c Hy - (c/2)GHE - HyH ) =14 (13)
can be used to establish
411)(2)
= .
Yo +3 (14)
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With the aid of Busbridge’s identity’ concerning mo-
ments of the H function,

V1—cHyy + (c/4)HHy i = HyHpo o +° "+ Hyy 4H{)

1
“%e 1’ 15)
we can generalize Eqs. (9), (12), and (14) to obtain
4~,(B)
g B=0,1,2,3,°"". (16)

M [ A EE VY

Generally when we apply Eq. (1) to physical problems
we consider ¢ to be a constant and thus clearly not a
function of the boundary conditions. It thus seems feasi-
ble that the manner in which ¢, as computed from Eq.
(16) and the experimentally measured *’(0, — p),
varies with g would be a reasonable measure of the
accuracy with which Eq. (1) represents the given physi-
cal problem. It also seems feasible that the multigroup
version of Eq. (16) would offer a definition of the trans-
fer cross sections alternative to the traditional one.
The finite-slab inverse problem solved in Ref. 2 for the
multigroup model could serve a similar purpose.
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Lorentz transformations of observable and ghost particle
states in quantum electrodynamics and in a massive gauge

theory
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Derivations are given of the effect of Lorentz boosts on physical particle and ghost states in quantum
electrodynamics. It is shown that the photon helicity is an invariant even though, in general, Lorentz
boosts transform the transverse, longitudinal, and timelike components of the vector potential into each
other. A similar calculation is made for an Abelian gauge theory in which the particles have dynamical

mass.

I. INTRODUCTION

Gauge theories in manifestly covariant formulations
generate particle spectra that include ghosts as well
as observable particles. Some ghost particles, such
as the scalar ghost in quantum electrodynamics (qed),
are excluded from the set of observable states by
subsidiary conditions.® Others, like the zero helicity
(longitudinal) ghost in ged, satisfy the appropriate
subsidiary condition and are members of the set of
allowed states, but have vanishing norms and there-
fore are still unobservable.

Under Lorentz transformations particle states are
transformed into different particle states. This
corresponds to the fact that an observation, carried
out in an inertial reference frame F, which detects
a particle with parameters P, would in general detect
a particle with different parameters, P’, when made
in a different inertial frame F’. Some aspects of
Lorentz transformations, when carried out on parti-
cle states in gauge theories, become involved with
the indefinite metric of the underlying Hilbert space and
warrant special attention, For example, a Lorentz
boost applied to a transversely polarized photon
which is propagating in a direction not parallel to
the boost, transforms the transverse photon partially
into nontransverse ghost states. The fact that the pho-
ton mass is zero makes it necessary that the photon
helicity be unaffected by the Lorentz boost, even
though there is mixing between transverse and
nontransverse states.? It is only in an indefinite
metric space that these apparently inconsistent condi-
tions can be reconciled. Consistency also requires
that photon states that obey the subsidiary condition
in one inertial frame do so in all inertial frames,
and that this important condition for the covariance
of the theory is not threatened by the indefinite metric
and the mixing of transverse photons and ghosts in
Lorentz transformations.?

For theories that can be formulated in a positive
metric space, group theoretic methods can and have
been used to study Lorentz transformations of
particle states.* But within a positive metric space
the transformations among the transverse and non-
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transverse photon states cannot be treated consistently.
In order to accomodate the requirements of an
indefinite metric space, we have constructed the
generators that effect the Lorentz boost and explicitly
calculated the transformed particle operators, in-
cluding their ghost as well as their observable compo-
nents. In this paper we will report on this calculation.
We will also include a discussion of the mixing among
the +1, 0, and -1 helicity states of a massive Abelian
gauge theory when a Lorentz transformation is carried
out,

Although Lorentz transformations on observable
and ghost states in gauge theories do not present any
extraordinary mathematical difficulties, they are not
explicitly carried out in texts, nor, to our knowledge,
anywhere else in the literature. We address ourselves
to this question in this paper, partly because the
topic is of interest in its own right, The subject is also
of special interest because it can be useful in identi-
fying the particle spectra of gauge theories with
spontaneously broken symmetries, Previously® we
have discussed a model that incorporates spontaneous
symmetry breaking and, in a later work, we hope to
identify the particle spectrum of that model unambi-
guously by using the techniques developed here to
examine how the relevant massive particles transform
among themselves under a Lorentz transformation.

H. LORENTZ TRANSFORMATION IN
QUANTUM ELECTRODYNAMICS

The Lagrangian for the free Maxwell field in the
Feynman gauge is®
[ ==4{F, F,, -Gx)?,A, +3G*x) (1)

with F,,=9,4,-9,A,. G(x) is a Lagrange multiplier
field which keeps 11, the momentum conjugate to 4,,
from vanishing identically. The Euler-Lagrange
equations generated by / are

nA,-2,0,4,)+3,Gx)=0 (2)
and

G(x):auAu (3)
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and the canonical momenta adjoint to A, are
,=0,A;-13;4, (4)
and
I, =iG. (5)
The Lorentz boost generator is given by

My;=1i [ agix,P;—x; 4}

~ Jax{[2,4,]A,~ [0,4,]A,}, (6)
where /7, is the momentum density
Py==T,2,4, (7

and // is the Hamiltonian density

H =30, +3iF ,F,

+i[njafA4_n/}ajAj]—aj{.AjeiAi]‘ (8)

The last term on the right-hand side of Eq. (8) is a
total divergence which makes no contribution to the
Hamiltonian H= j dx/{ but does make an important
contribution to M,, [Eq. (6)]. Unless this total diver-
gence is included in //, the A, and the F,, will not

all transform properly among themselves like compo-
nents of vectors and antisymmetric tensors respec-
tively. The decomposition of A, and 11, into particle
creation and annihilation operators proceeds as in
Ref. 7, except that we now choose invariant integration
over momentum space variables. We express A, as

A= g AR 8 )

X [A, (k) exp(ik,x,) + Al(k) exp(= ik,x,)]

with k= Ik [ , Where A,(k) and Al(k) obey the commu-
tation rule

[4,(K), ALK")]=2k.5,.0 (k —K’).

Here €5 (k) =0, , and €/(k) indicates a set of unit 3-
vectors of which £® k)=k/|k|; €V(k) and € @ (k) are
two unit vectors that, together with €%(k) form an
orthogonal triad. We express II, as

) = Gayorr S G 123i420)
% [— A, &) explik,x,) +A;(k) exp(- ik, x,)]
+ €3 k) +€L&) ][~ (4, () +4A,(K)) explik,x,)

+(AJ&) + 1A K)) exp(- ik, x ) T} (10)

The space—time function exp(ik,x,) (with k,x,
=k *X — kgx,) includes the explicit ¢-number time
dependence characteristic of free fields. We exclude
interactions between photons and charged particles
because these interactions have little to do with the
question of how single particle photon states appear
in different inertial frames. Moreover, the definition
of single particle states is very much complicated by
the persistent effects of charged particle—photon
interactions, and this too has motivated us to omit
these effects in this work.

The operators that describe the scalar and the zero-
helicity ghosts are
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Agk) = (1/V2)[A,k) +iA,&)], (11a)

Arlk)=(1/y2)[A,k) ~ i, k)], (11b)
and their adjoints are

ALy =(1/y2)[AlKk) - iA1 (k)] (12a)
and

ARll) = (1/VD]AL ) +iAl k)], (12b)

The ' adjoint denotes the Hermitian adjoint, which,

in an indefinite metric space, is not the representa-
tion-independent adjoint that relates self-adjointedness
of an operator with the reality of its eigenvalues.

The ad]omtmg operation that satisfies this criterion is
the ¥ adjoint, for which® A%=A} and A% =A}. The
Gupta—Bleuler subsidiary condition,

2,AL [n)=0, (13)
translates into the momentum space equation
Aglk) |n)=0, (14)

and the photon state A} \0) represents the scalar
photon forbidden by the subsidiary condition. The
state A} |0> represents the zero-helicity photon, and
it satisfies the subsidiary condition [Eq. (14)]. Since
(Ag IA*> 0 and (44 !A y=0, both the forbidden scalar
photon state and the zero- he11c1ty photon state are
ghosts. In a superposition of allowed states, i.e.,
those obeying Eq. (14), the zero-helicity components
are not observable since they have zero norm and
therefore zero probability of being detected.

Under a Lorentz transformation the vector potential
transforms according to

AL(A'a):AuvAv[A-ulﬂxB]“ (15)

When the transformation is infinitessimal, A, is
given by
Buy=0,, tuwy, (16)

and in the case of a pure Lorentz boost w,;=-i68
= - w;,, while all other components of w,, vanish;
88;=0v,/c, where 6v is the infinitessimal velocity
which the origin of the primed inertial frame has
in the unprimed one. The infinitessimal change in
A,x), BA,(x)=AL(x)~A,{) is given by

64, (x) =064, (x)+ (8x,)3,4,(x). amn

Here 0A,(r) is the part of the transformation that
“scrambles” the vector components, and will be
written as

i

8A, (x)= W—‘/zk {EGEA)‘

4
X [A, &) exp(ik,x,) + Al(K) exp(~ ik,x,)] +§1€J(k)
X [54, (&) exp(ik,x,) + Al K) exp(=ik,x,) ]} (18)

In §4,(x) the “scrambling” of the components of A,

is represented by the first order change in the mo-
mentum space photon operators, and in the unit vectors
that mark the direction of propagation and the two
transverse polarization directions. (8x,)3,4,{(x)
transforms the space~time point in the argument

of A, (x).
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In evaluating 6A,(r) we need to calculate the first
order variations 6¢ * (k). In order to permit a consistent
interpretation of A,(k) and Al(k) as the annihilation
and creation operators, respectively, for photons
polarized in the propagation direction, and A, (k),

A,(k) and A(k) and Al(k) as the appropriate operators
for the transversely polarized photons, we must
transform the three unit polarization vectors é*’(k),
£2)(k), and €' (k) so that they remain an orthonormal
triad in all inertial frames. A representation that
satisfied these requirements is £ (k) =k/ |k| and
VK =e® k) e, &) |, €PK)=e®Kk)/|e® k)|, where
ef® and e{® are the entries m a second rank antisym-
metric tensor te, With 2, = e, t = - e, 1.=ef®,
fha=—ie, ty=-ies?, and f, = - iel"’, Lorentz
transformation of the tensor 7,, produces the following
first order variations in the polarization unit veciors:

ED k) == (1/v)[v - (v- R ]o(d), (19a)
B DK) == (/)X v_ k- v £ ]5(B), (19b)
and
5 @)= (1/0)[e VXV +k-VER5(B), (19¢)
Use of Egs. (19) in representing the variation 64,
leads to
BA(x) = WJZk EO(F £ W) 4@ (F.8@))
X [A; &) explik,x,) + AlK) exp(— ik, x,)]
—EPEWLT(A, ) explik,x,) + Al(K) exp(- ik,x,)
+E@ T (A,(K) explik,x,) + Alk) exp(~ ik ,x,)) ]}
+ (2-%377 ]é—kf {£ 2 [8A, (&) explik,x,) + 8A! (k)
X exXp(~ ik, x,)] +E2 [54,(k) exp(ik,x,) + 6A}(K)
X exp(— ik,x,)] +EP[6A4,(K) exp(ik,x,) + 6ALK)
X exp (- ik, x, )} (20a)
ang
% 1 dk
8A,(x) = sz—k: (04, (&) exp(ik,x,)
+ 8A(Kk) exp(- ik,x,)]. (20D)

In the remainder of this section we will use Eqs.
(20), together with 6x,9,4, (x) and the expression
0A,(Y) == iw,g[Map. Au(0)], (21)

which we will substitute into Eq. (17) in order to find
the explicit form of 5A4,(k) [and 6Al(k)], the change in
A,lk) [and Al(k)] that the Lorentz boost produces.
8x,3,4,(x) can be written

(x)= _@%}TJ %{'{[xj_xo}%j]i—igu(k)
X [4, ) exp(ik,r,) - ALK) expl- ikur, )]
(22)

We can replace x;exp(ik,x,) in Eq. (22) by an integra-
tion by parts in momentum space. Modulo integration
by parts we have

bx,0,A,
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0
5%, exp(ik,x,)

=ix,explik,x,) - ix, %-’- explik,x,); (23)
f¢3
the last term on the right-hand side of Eq. (23)

stems from the mass shell constraint k &, =FkJ in
explik,x,).

If this substitution is made in Eq. (22), we have
0,5 A, (x0) = - 08 [ {[ae 2 4 )
.I
- 2A )
+E () —Z;Tfkl] explik,x,)
"3
pop ¥
. [ae“(k) ALl) + 23 () A} (k)]
akJ 3
X exp(~ ik,x,); - (24)

8A,(x) is evaluated by using the commutator in Eq.
{21) and the expressions in Egs. (6)—(8), and by
making use of the identity given in Eq. (23), This
leads to

4 24,
OA ’n)é7 jz %_-‘/E {{ Oak ko
At
xi} ae“’Ah,+i‘ZL)1(€2€
Al=

Aulw ok
xexp(zlzux“)Jr[ k, B_A:_k i) ga .
ak; Orpral kl

¥ ~amar
$ Ay =EET A, ]

+4 i}(egg;'A{,- ‘ge“;'A* ) exp(— ik xu)} (25)
The resulting expressions for 6A!(k) are
8ANK) = JZoBEM (k) DAL(K) (26a)
BANK) = JZ6BE @ (&) - D AL(K) (26b)
BALK) =686 (k) - DALK) (26¢)
SALK)=—08B[EY DALK) + J2EW - BA]
+J2Ze@ DAL (264d)

and the corresponding adjoint equations for the annihila-
tion operators,

6A, (k)= J26BE V (k) P A,k), (26e)
6A,(k) = J258E @ (k) D Ayk), (261)
0A4(k) =68 (k). D AyK), (26g)
BAK)=—8BIE® s pa, + JEED DA

+V2E@®eD4,]. (26h)

To translate Eqs. (26) into Lorentz transformations
on helicity states, we apply the boosts to creation
operators acting on the vacuum, and define

Al = (Al +iAD/Z, AL, =(A]-iAD/J2, as well as

EM = iy +2€%)/J2, and €)= (¢ _ @)/ 1T We define
[k, (+))=a4l,,&)|0), (272)
Ik, (-))=4%, ) |0), (27b)
[k, RY=A%L(K)|0), (27¢)

and
ik, @ =AaLk)|0). (27d)
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The transformed states, to first order in 63, are

[k, ()Y = [k, (+)) + V2886 (k) « D [k, R), (28a)
Ik, (<)) = |k, (=) + V2 68€"’(k) - [k, R), (28b)
[k, RY =[1 +568¢(k)- 0]k, R), (28¢)
fk, @ =[1-06p¢®. 2]k, Q)
FOBEW Dk, —)+EC D[k, )]
(284)

Equations (28a) and (28b) indicate that under Lorentz
transformation the photon’s helicity is invariant. If

the helicity is +1 or — 1, then the generation of |k, R)
components in the transformed wavefunction leaves

the helicity unaffected because |k, R) is a zero norm
ghost which is orthogonal to every other state vector
in the physical subspace, and, in particular, is
orthogonal to all |k, (+)) and \k —)) photon states. It
is not orthogonal to {k, @) states, but these latter are
forbidden by the subsidiary condition, and inspection
of Egs. (28) demonstrates that they are never genera-
ted by Lorentz transformations of states allowed by the
sub51d1ary condition, The helicity of [k +)' [and
lk ] is therefore trivially identical to that of [k +))
[and |k {-)] respectively, It is the vanishing norm of
the |k, R)] state in the indefinite metric space that
allows the photon’sg helicity to be invariant in a Lorentz
transformation even though a Lorentz boost applied

to a transverse state does generate nontransverse
components, Similarly Eq. (28c¢) shows that the

|k, R) ghost remains the pure |k, R) ghost state in

a Lorentz transformation and neither develops
transverse nor forbidden ‘k, @) components, Following
the usual nomenclature, we have referred to the

lk, R) ghost as the zero-helicity photon, but properly
speaking it has no helicity at all because its vanishing
norm does not allow the definition of a helicity, nor
any other expectation value. The Lorentz transforma-
tion of the forbidden ghost, |k, @), is given for com-
pleteness, but has no physical significance since

'k, Q) states are not admitted into the spectrum of
observable states. Since the |k, @) ghost is never
generated by a Lorentz transformation of a transverse
or zero-helicity ghost, and, equivalently, since the
Lorentz transform of Ag(k) only involves further

Ay (k) components, the subsidiary condition is easily
explicitly shown to be invariant.

Il. GAUGE THEORIES WITH MASSIVE PARTICLES

In this section we will apply Lorentz boc sts to the
particle states of a massive gauge theory, This theory
has previously been discussed by one of us’ (KH). It
results in a spin one massive boson, but it is a gauge
theory and is formulated with a Gupta—Bleuler sub-
sidiary condition in an indefinite metric space. It is
therefore different from the Proca theory of massive
vector bosons.'?

The Lagrangian for this theory is

[ == §F  Fu,— MW, W, - G(x)3, W, +3G%,, (29)
and the Euler Lagrange equations are
2, F,, - M*W,+2,G6=0, (30)
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The Hamiltonian density is
H =315 + MPW2 + SF , F , +i[ 8 W,
-3 ,W,]-2,[W,0,W,]. (31)

Except for the case that in this section %, denotes
[|k|?+M2]/2, the momentum space decomposition of
W, exactly parallels that of A, in Eq. (9), and the
same unit polarization vectors are used in this case.
The decomposition of 11, is given by

M,(x)= W} %‘— {éieﬁ(k)

X [- 4,() explik,x,) + AlK) exp(= ik, x,)]

ly,

k(l

+ 0k
ko

1(k) A, k) — €3 (k)A, &) ] exp(ik,.x,)

¥ 3 t
[63 @) ALK — €3 (k)AL (k) Jexp(~ 7k x,)} (32)

The massive boson creation and annihilation opera-
tors are more complicated than the photon operators
in ged. They are discussed extensively in Sec. II of
Ref. 9, and the relevant ones will be defined here.
A%() is given by

Apli)= = M"" ){ AlK) + !,kl Alk)], (33)
Yo
where N(k) = v’? lol |k |2+ 3]*/2 and the properly
normalized zero-helicity state is given by
Ik, Ry =1{[r2+ |k |*T/%/M}ALK)|0). (34)

Equation (34) marks one of the most significant differ-
ences between this massive gauge theory and qed.

The state ]k R) is not a zero-norm ghost, but
instead is a properly normalized state with &k, R* |k'R)
=0,,,.- The helicities of the massive gauge particles
therefore are not invariant under a Lorentz boost,

but transform among themselves.

The massive boson forbidden by the subsidiary
condition is Al(k)|0),

where

Ay =Yl a0 sage0]

(35)

The tensor composed of the components ¢ ¢! and &

in this case is t;,, = ([k|/k)el, f,== (|k|/ky)el®,
‘k|/k JeP), Ly=—iel”, ly=-iey”, and ty

=- w“’ The resulting expressions for the variations

&¢ are

66‘3’(1{):—% %[v— (v B)R]68, (362)

56 K) = _ TT @ XV (2 v)E D58, (36b)
and

66(2)(1{) .%%[é‘"’xv-e(};uv)é‘@’]éﬁ. (360)

Lorentz boosts of the massive boson states are given
by

N ~ M
6|k, (x)y=0pE " vm Ik, R) (37a)
and
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5|k, R>:_53%[5‘”-% Ik, (<))

+EC DK, (+)], (37b)

and in this case describe the transformations among
the +1, —1, and 0 helicity states. As M/ |k | becomes
smaller, the amount of mixing of +1, 0, and ~1
helicities in a Lorentz transformation decreases. This
is consistent with the fact that there is no mixing at
all in the case of massless photons. However, in the
process of establishing the normalized state vectors
for massive particle states, division by both M and

|k| may be equated to zero in Eq. (37) with safety.
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We solve the following integro—differential equation for the eigenfunction u(x):
su(x)={d?%/dx?*—[1—6sech®(x)]} u(x) —ef*ou(x")sech(x')dx' (14+vd %/ dx *)sech(x),
where s is the eigenvalue and € and v are arbitrary parameters which need not be small. This equation
occurs in laser modelocking theory in the analysis of pulse stability, and s is proportional to the rate of
growth of perturbations. We expand the eigenfunction u(x) in terms of a convenient basis set A(x,k)
satisfying
—k *A(x,k) =[d*/dx*+6sech’(x)]A(x,k).
We find two discrete eigenfunctions uy(x) and u,(x) and a continuum u(x,s). We find that the lowest
eigenvalue sy(€) is —3 at € =0 for finite or zero v, and that the point where s, =0 the parameters €

and v obey
e=2/(1—v?).

This is the zero growth point at which no eigenfunction u(x) has a positive eigenvalue s.

. INTRODUCTION

In this paper we review the solution of a second order
integro—differential eigenvalue equation which occurs
in the theory of saturable absorber laser modelocking. *
The modelocking of a laser occurs via temporal modula-
tion of the electric field within the laser cavity to pro-
duce short pulses of light. In passive modelocking, the
modulating element can be a fast saturable absorber
which sharpens the pulse upon each passage through it
by absorbing the wings of the pulse preferentially to
the pulse maximum (the pulse maximum bleaches the
absorber and sees less loss than the wings). The active
gain medium has only a finite bandwidth which broadens
the pulse upon each transit. A steady state operating
condition is reached when the nonlinearity of the ab-
sorber balances the dispersion due to limited band-
width in the gain medium.

The modelocking equations have been solved in closed
form to yield pulse solutions and operating parameters
for modelocked laser systems. The stability of the
steady state pulses was a question of some interest be-
cause experimentally passively modelocked systems
were often unstable, and before the recent theoretical
work there were no guidelines by which one could de-
sign a stable system from the basic system parameters.
The present paper is motivated by the stability
analysis.

The linearized equation of motion for perturbations
of the steady state pulse can be reduced in the case of
well-separated pulses to the following integro—differ-
ential eigenvalue equation,
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su{x)

)

2 ©
= ((%*z -[1-86 Sechz(.\‘)]> u(x) - ¢ f u(x") sech(x) dx’

. .
X 1+V“W SeCh(»\), (1)

where s is the eigenvalue and € and v are arbitrary
parameters which need not be small. The different
terms in (1) can be assigned physical significance, the
eigenvalue s gives the growth rate of perturbations from
pass to pass, and therefore conditions under which s
cannot be positive are of interest. The second deriva-
tive is a “diffusive” operator due to the limited band-
width in frequency of the active gain medium and the
“potential well” term is the normalized loss seen by
the perturbation. The integral term is due to the addi-
tional saturation of the gain medium which is caused by
the perturbation.

In the following solution of (1), no restrictions are
placed on € and the final results are valid even for com-
plex €. The method of solution is to expand the eigen-
functions «(x) in terms of an orthonormal set of func-
tions satisfying the potential well eigenvalue equation
(a degenerate Lamé equation)

2
- PEA(x, ) :(7;—1\72+ 6 sechz_\'>A(.\', k). (2)

The eigenfunctions #(x) reduce to A(v, #) when the pa-
rameter € is zero in which case there are two discrete
eigenfunctions and a continuum of eigenfunctions. As €
becomes nonzero, one finds that (1) retains two eigen-
functions and a continuum, and that of the spectra of
eigenvalues, only the lowest one varies with € and V.

In Sec. 1I we present the solutions to (2) and in the
following two sections we solve for the eigenfunctions
of (1) in the special case of v equal to zero. This is
done for the sake of clarity, since in this case the equa-
tions are simpler and hence more transparent. In Sec.
V we treat the case of artitrary v.
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Il. SOLUTIONS OF THE DEGENERATE LAME
EQUATION

The solutions of (2) are given in Refs. 2 and 3 and can
be written:

Ay(x) =v3/4 sech’s (- K =4), (3)
A (x) =V 3/2sechx tanhy (- k* =1), (4)

) 6 er
A(,\" }\’) = eXp(vzkx) [ - m (W)

12 e* \? 2
TATIRE ik (e"+0"‘> ] w=0), (3

where the normalization is

f_: AN () dy = f_: Al(xyde =1, (6)

Z_ir f f Ay, RYA*(x, kY dx dk =1. (D

These functions constitute a complete orthonormal
basis set. Completeness of the solutions of Sturm—
Liouville equations is discussed in Refs. 3,4, and 5
and the normalization follows from the evaluations of
the integrals in (6) and (7). The main contribution of
the integral in (7) comes from the wings in which the
continuum eigenfunctions become complex exponentials,
and so the normalization is similar to the case of the
Fourier transform.

I1l. SOLUTION FOR THE DISCRETE EIGENFUNCTIONS
FORv=0

There are two discrete eigenfunction solutions u,{(x)
and u;(x) to Eq. (1), the latter of which can be assigned
immediately

1 (x) = Ay (x) =V 3/2 sechx tanhx, s,=0, (8)

since u;(x) is odd and its overlap integral with the hyper-
bolic secant is equal to zero. The remaining discrete
eigenfunction can be found by assuming a solution of

the form

1 w
u(x) = UOAO(X) +m / U(k) A(x, k) dk, (9)
When the parameter v is zero, Eq. (1) reduces to
d2
su(x) = ((7\7 - {1-6sech®) ) ulx)

—€ sechxf u(x") sech(x’)dx’, (10)

which we shall consider in this and the following section
in detail. Inclusion of the additional term when v is
nonzero presents no additional difficulties, as is shown
in Sec. V.

Upon insertion of the solution (9) into (10), we obtain

(5o= 3) Uy, (x) +ﬁ1? /ﬂ (so+ 1+ DUR)A(x, k) dk
=- €a, sechx, (11)

where a is the overlap integral
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FIG. 1. Eigenvalues s as a function of parameter «.

ay= [ Zuylx) sechxdx (12)

which must be found self-consistently with u,(x) later
on. The transform of the hyperbolic secant is

Sp= f secthg‘(X)dx:if—ﬂ, (13)
S(k) = 1 wsecth*(x k) dx
NET I ’
1+ik
=v'1/8sech(k/2) — |, (14)
2-:ik
where the integral in (14) is evaluated in Appendix A.
Using the results (13) and (14), Eq. (11) becomes
1 w
(S[) - 3)U0A0(x) +7‘2_7T' '/:'° <SO + k2 + I)U(k)A(X, k) dk
1 w
== € [SOAO(J&)"FTZ—W LS(k)A(x, k)dk}. (15)
Using orthogonality, it follows from (15) that
(sq~ 3 y=— €aS,, (186)
[sg+ R+ 1]JUR) = €aS(k). (17

One observes that the lowest eigenvalues Sy is 3 only
when the parameter € is zero in which case the eigen-
function u(x) is simply Ay(x). The quantity (s,+ k% + 1)
is never zero for a discrete eigenfunction. However,
it can be zero for continuum eigenfunctions, a case to
be considered in the next section.

The lowest eigenfunction is

L ESiAx) €y f‘“S(k)A(x, ) 1
w)=-=FEF= - | SR (18
where o, must now be determined self-consistently
with u#y(x). Using (12), one obtains
S,S% * S(k)S*(k)
1+ e =
€(so—3+ [wso+kz+1dk 0. (19)
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FIG. 2. Even eigenfunction uy(x) at s;= 0.

When the parameter € is much less than unity, the
eigenvalue s is positive and nearly equal to 3. As €
increases, $; decreases and approaches — 0. 84 asymp-
totically as shown in Fig. 1. Of interest in the stability
analysis is the value of € at which s, becomes equal to
zero, which can be found analytically by using the fol-
lowing results:

S,S7 7°

1a 20
Sy=35,-0 16 (20)
* S(SHR) [ “sech’(ni/2)
e Se TR A1 08 Jo A+R '
7 1
:ﬁ—§7 (21)

where the integral in (21) is evaluated in Appendix B.
The required value of the parameter € at which s, be-
comes equal to zero is found to be

€(s,=0)=2 (22)

in the case of the parameter ¥ equal to zero. This is
the boundary between stability and instability of the
perturbation obeying (1) (for v =0). When ¢ =2, the two
discrete eigenfunctions wuy(x) and u;(x) are degenerate
and one can construct eigenfunctions which are a linear
combination of uy{x) and wy(x).

In Fig, 2 we show ug(x) at € =2 where s4=0. The
negative lobe of the function around x =2.5 is due to
the term proportional to € sechy in (1} (note that it is
missing completely when € =0) and grows larger the
larger € becomes.

IV. SOLUTION FOR THE CONTINUUM
EIGENFUNCTIONS

Assuming a solution of (1) of the form (9) fails for
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the continuum eigenfunctions because as defined U{k)
is singular on the real # axis and the integral in (9)
becomes undefined. Also, since (1) is being treated as
an inhomogeneous equation (the integral is a constant
found self-consistently with the eigenfunction solution),
the solution in general is composed of a particular
solution and a homogeneous solution which can be added
in order to satisfy boundary conditions or constraints.
In the previous section no mention was made of homo-
geneous solutions because in general they blew up
asymptotically. These two problems are intimately re-
lated; the singularities on the real axis correspond to
the homogeneous solutions.

One therefore assumes a solution to (1) of the form
u(x, s)

=Uy(s)Ay(x) +7217 fmU(s, RYA(x, k) dk

Y

+l7]*2=(1f—)A[x, ~(s+ 1)]+%5(—7‘:')A[x, -V=(s+ 1],

(23)

where the functions U,(s) and U_(s) determine the
amount of homogeneous solutions to be added to the
particular solution and the principal value integral is
used in anticipation of the singularities of (k) which
oceur at s+ k% +1=0. Upon substitution of (23) into
{10}, one obtains

(s = 3)y(s)A,(x) +7=t217r /w(s + R4 DU(s, RA(x, k)dk

=~ €a(s) <SOAO(X) + 7—217 /wS(ie)A(,\‘, R) dk) , (24)

where the overlap integral a(s) is defined by
a(s)= [ “sechyu(x, s)dx (25)

and the principal value integral is replaced by a
Riemann integral since the singularities in the inte-
grand have been removed by the factor {s + %% + 1) under
the integral. By orthonormality of the basis functions,
one has from (24)

Uy(s) :_%ﬁé_g—o, (26)
S(k
u(s, k):_:—i‘%(—l—), @7

from which the continuum eigenfunctions are

u(x, s}

eals)Syhg(x)  eals) f *S(k)A(x, k) dk
T s<3 T e SHE+1

+ Ug(f) Alx, V= 5+ D) +%% ALy, —V=ID). 28

The determinantal equation for the eigenvalue s is found
by requiring «(s) to be determined self-consistently
with u(x, s),
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€S,5% S(R)S* (k) )
(’@+ Soat €f s Gl

=US)SH[V=(s + D]+ U(s)S* -V ={s + 1)), (29)

which can be satisfied for all s < -1 since U,(s) and

U {s) are arbitrary.

V. SOLUTION FOR THE LOWEST EIGENFUNCTION
IN THE CASE OF FINITE v

When v is finite, the procedure for constructing the
lowest eigenfunction uy(x) is very similar to that used
in Sec. III in the case of v equal to zero. As before,
we assume a solution of the form (9), which is

1(x) = Uphy(x) +% [w U(RYA(x, k) dk, (30)

which upon substitution into (1) yields
. 1 - 2 .
(80—3)U0A0(A)+72—ﬂ_ [m (So+k +1)U(}?)A(\,k)d}?

& >
_ 2 .
=€, (l +v e sech(x

=— €qy[(1+ V%) sech(x) - 21 sech®(x)), (31)

where we have expanded the second derivative of the
hyperbolic secant. The new result which is required
is the transform of sech®(x) which can be found to be

V337
16 ’

Qo= f sech* () A¥(x) dv = (32)

Q(k) :7%7; f " sech¥()A* (x, k) dx

9 .
:-m(—l%-k—z(l+lk>sech(%€>, (33)

2-ik
where the integral in (33) is evaluated through a pro-
cedure similar to that described in Appendix A.

From here, one can write down the lowest eigen-
function following the steps in Sec 1III to be

_ (L4 098,80(0) , (140)) [ =SGRIAG, #)
u(,\):—eao( S_3° 0y e mso+/€+1d1‘
200Q A (x) 20 [QR)A(x, k) )
SR et - M e K 59

Requiring o, to be determined self-consistently yields

sg S*(k >
¢
1+€[(1+u fmsq+k+1dk

2 [ QuSE = QR)S* (k) ) _
-2V (SO—3+ -xmd}? =0. (35)

This result is similar in form to the result (19) found
in the case of v equal to zero.

We wish now to evaluate (35) when s, is zero, in
which case we require the following results:

QS 1 <ﬁ3n> ELAVIE- L
23 " T3\ 16 4 |7 64’ (36)
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© Q(R)S*(k) O 1+k2> 2<n_k>
——y——dk =~ 3 I sech 2 dk

e Sg+ R+ 1 w \4+
3 1
LU 7
64 2 (37)
Using {36} and {37) we obtain from {35)
2
€ :1‘:172 (38)

which is the required result.

In the stability analysis the parameter ¥ is propor-
tional to the ratic of the steady state pulse bandwidth
and the linewidth of the amplifier, and is much less
than unity wherever the original model is valid. The
analysis here is valid, however, for arbitrary v.

The construction of continuum eigenfunctions if they
are desired proceeds analogously with the method used
in Sec. 1V, and we shall not concern ourselves with this
generalization.

SUMMARY

The integro—differential eigenvalue equation (1) has
been solved and two discrete eigenfunctions uy(x) and
uy(x) were found as well as a continuum of eigenfunc-
tions. A determinantal equation was derived for the
lowest eigenvalue s; and solved analytically at the point
where s; equals zero which was the result of interest
in the stability analysis from which (1) originated. The
result is a relation between € and ¥ which is valid at
the stability boundary and can be written as

(at s,=0). (39)

€ :—“—71 2

In the physical problem where (1) originated the param-
eter ¥ is less than unity, and so whenever the gain
saturation parameter ¢ takes on values larger than 2/
(1-v% (for ¥* < 1) then the system is not unstable.

In the case of v equal to zero, the continuum eigen-
functions were constructed and a determinantal equa-
tion was derived for the continuum eigenvalues s, which
has solutions for all s £ ~ 1. This result holds also for
v not equal to zero.
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APPENDIX A

We consider the evaluation of the following integral,
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FIG. 3,
r/" sech®(rk/2)

Poles and contour integral for

8 ke +4

1 h . 6 *
S(k) =g f dxsechs exp(~ ikx) [1 - m<—f">

x 27«
+(1+z‘k)1(22+z'k) <eie> ] : (a1

The key step in the evaluation of (A1) is use of the
identity®
'/;1 1= xR (a, 8y ) dx

:%@(a,ﬁ,piv,p+o\l), (A2)
where
Rep >0, Res>0, Re(y+o-a-8)-0. (A3)

The hypergeometric function ,Fy(«, B \y {x) can be written
in terms of a series

2F1(a,}3:7"-\')

+a(a+ 1B +1) f_ _
1! vy +1) 21 "

ala+l) . {a+n-13B+1D - B+n-1)
* Yir+1D - ly+n=-1)

)('.Y_ e, (A4)
al
The generalized hypergeometric function ,Fy(a, 8, v19,
€ {x) can similarly be expressed as a series

+Fala, B, 7|6, €]x)
_ 08y (et DBE+1yly+1)
R VT R VL VR

ala+1) - (a+n=1BB+1) -
* 55+ 1) -(B+n=1)
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Brn=ylr+1...rkn=1) =" (A5)
€ele+1)--(e+n-1) nl

If one defines
(@), =ala+1)--(a+n=-1), (a)=1, (A6)
then these series can be written in the compact form

ZFI(O"B’V\X):i)M X"

n=0 (7),, E ’ (A7)
o, B, 7] 6, €lx) =2 (@),(8), (), x" (A8)

a0 (O (e),  nl-”

These functions are convenient here in that the notation
becomes more compact and hopefully clearer. We note
that the series terminates after m steps if there is a
negative integer, — s, in the first set of arguments of
the function.

The summation in brackets in the integrand of (A1)
can be rewritten as

L6 e\, 12 e* >2]*
T14ik\et+ e T QAFR)C A iR\ xe

L e
:‘_21:1 (3,—2'1—7}\’}?‘—+—>.

()—X

The substitution

ex

i (A10)

g =
brings (A1) to the form of (A2), namely
1 b ,

S(]?):: Z(l-tk)/?(l_z)(lnk)/Z
V2T 0

dz

><2F1(3,—2\1—zk\z)z(1_2)»

(A11)

The following identifications are made:

_<1-'z'1e
p={—=5—)>
_1+z‘ie>
o=~ ,

a=3,

B=-2,
v=1~17k,

(A12)

to yield the result

S(k) :721—77 [r (1 P ik)r (1;ik>1/r(1)

X F, (3,-2,1;lkl1-ik,1|1).

(A13)

The series terminates after two terms and with the
identity for the gamma function,

1~k 1+ik nk
F( 5 >F< 5 >_7rsech<7>,

one obtains after some algebra

S(k)=v7/8 sech(7k,/2) <—1+—Zk>,

(A14)

Tk (A15)

which is the required result.
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APPENDIX B
In this appendix we consider the integral

7 [“sechi(mh,2)k

1=§ I U

g T (B1)

which can be evaluated simply by calculus of residues.
The poles lie along the imaginary # axis as shown in
Fig. 3 and by closing the contour about either the upper
or lower half plane we obtain

o ﬂsechz(ﬂ/e/’2)>
1:2771_Z/R(ES<§'—4—+—]\—)2~~ .

(B2)
The residue at =+ 27 is due to a first order pole and
is

Res(x 27) - (B3)

32i°

The residues at # =+ i (for n odd) are due to second
order poles and are

. 1 2ni
Res(+ ni) =37 [(—4—_—'-77?] . (B4)
The integral can therefore be reduced to
- 2n
=== 2y Ty
! 16~ (@4-nb) (B5)
odd
4]
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This summation turns out to be trivial,
14 1 1
modd 2-m)" @2+n?

1
4
_1[1+1+1+1+.. 1 1 e
4 3T R
1
2

1 (B6)
giving the required result
71
=16"3" (BT
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A theory of classical limit for quantum theories which are

defined by real Lie algebras
Kai Druhl

Max-Planck-Institut zur Erforschung der Lebensbedingungen der wissenschaftlich-technischen Welt, D-

813 Starnberg, Germany
(Received 16 January 1978)

A theory of classical limit is developed for quantum theories, the basic observables of which correspond to
elements in some real Lie algebra L, For both quantum and classical systems based on L, the basic
observables are contained in a unique universal algebra. This is the universal enveloping algebra U for the
quantum case, and a universal commutative Poisson algebra B for the classical case. U and B are
connected by a system of contraction maps. For certain sequences of representations and of vector states
defined by them renormalized expectation values of the quantum variables are shown to converge to values
of the corresponding classical variables at some point in the classical phase space. The classical phase
space is obtained as a limit of certain systems of coherent states. The general theory is illustrated by

several examples and counterexamples.

1. INTRODUCTION

In this paper we develop a rigorous and general theory
of classical limit for a large class of quantum theories.
Heisenberg’s discussion of this limit! is based on the
canonical commutation relations for pairs of conjugate
observables P and @:

[P,Q]=P-Q-Q -P==i, i-i==1, (1.1)

in microscopic units where i=1,

Heisenberg’s uncertainty relations then give a non-
vanishing lower bound for the dispersions of the basic
observables in any arbitrary state,

ANQ)-AXP) =, AMA)=(f,A*) - (f,A, 1)} (1.2)
which is derived from (1.1). In the limit of large quan-
tum numbers, i.e., for states where the expectation
values of the basic observables are large compared to
their dispersions, the expectations values of the physi-
cal quantities may then be replaced by their classical
value. At the same time the commutator relation (1.1)
is replaced by the Poisson bracket for the correspond-
ing classical quantities P and :

Q—Q, P~P, {P,Q}=1 (1,3)

(see Ref. 2 for a more recent analysis of classical limit
based on canonical commutation relations).

We wish to emphasize here that the notion of classi-
cal limit and, in particular, the existence of a Poisson
bracket for the classical quantities is in no way re-
stricted to theories defined in terms of canonical com-
mutation relations. A careful analysis of more general
situations seems worthwhile, for example, with a view
to relativistic particle theories, for which the analysis
of classical limit continues to be of interest (see, e.g.,
Ref. 3 and 4).

For the class of theories we shall study here the
basic observables are assumed to correspond to ele-
ments in a finite dimensional, real Lie algebra L.

By a quantum theory based on L; we mean a represen-
tation p of L, by antisymmetric, linear operators on a
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dense linear subspace D of some Hilbert space 4, with
essentially self adjoint operators ¢p(X), X in L;, which
are the basic quantum observables.

By a classical theory based on L, we mean a linear
map P of L, to the algebra of smooth functions on some
canonical manifold I such that

P), PV =P(X, Y)), (1.4)

where {+-+, -} is the Poisson bracket on I.?> The
functions P(X) then are the basic classical observables.,

For both types of observables there exist universal
algebras containing them. For the quantum case this
is the universal enveloping algebra W of L, (resp. of its
complexification L), while for the classical case this is
the associated Poisson algebra 8. Our discussion of the
classical limit is based on a certain algebraic relation
between both algebras which may be considered a con-
traction analogous to notion of contraction for Lie
algebras’ [In Refs. 7 and 8 the inverse process of defor-
mation of the Poisson algebra of classical observables
is studied as a means of quantization. In fact the canoni-
cal linear map ¥:B— U and its inverse discussed in
Sec. 3 always lead to a deformation of 8 in the sense
of Refs. 7 and 8). ]

In Sec. 2 we briefly state the generalization of
Heisenberg’s uncertainty relations appropriate for our
case,

In Sec. 3 we define the algebra U and a set of
Poisson algebras isomorphic to 8, discuss their uni-
versal properties and their algebraic relations which
establish B as a classical limit of U on this purely
algebraic level,

In Sec. 4 we consider sequences of representations of
U which can be contracted to a realization of 8 by func-
tions on a certain canonical manifold (phase space).
This phase space appears as the limit of certain sys-
tems of coherent states in the sense of Ref. 8.

In Sec. 5 we give some examples and applications of
our general theory and state a counterexample.

© 1978 American Institute of Physics 1600



2. UNCERTAINTY RELATIONS

Let // be a complex Hilbert space with scalar product
(+++,-++) and f a unit vector in #:(f,f)=1. For any (un-
bounded) linear operator A on /4 such that f is in the
domain D{A) of definition of A we write

for the expectation value of A in the state wy.

(2.1)

Proposition 1. Let A, B be any two symmetric linear
operators on #, and f be a unit vector contained in the
domains of definition D(A <A), D(B-B), D(A +-B), and
D(B-A). Then

WrlAA) - wy(BB) > i |wA - B~ B-4)|%, (2.2)
and Eq. (2.2) is an equality if and only if

(A +ivB)f =0 for some real number 7. (2. 3a)
In this case

ws(A -A) ==3iw(A-B-B-A)-7. (2.3b)

Proof: For any real ¢ the vector (4 +itB)f is in D(A)
and D(B). However (A - itB)*> A +itB implies that the
real quadratic function,

p(t)=w (A - it B)(A +ilB))
=wild -A) +tiw (A -B-B-A) +t2w,(Bz) >0

is not negative for any 7, which implies Egs. (2.2)
and (2. 3). Q.E.D,

If we replace the operators A and B by 4,=4 - w;(4)*1
resp. B, the right hand side of Eq. 2.2 does not change
and we obtain from Eq. (2.2} a lower bound for the
product of the statistical mean-square deviations or
dispersions:

AHA)=ws (A - A) - we(A),

AYA) AYB) = +|w;(A-B-B-A)2, (2.3)

In particular these cannot vanish simultaneously in the
state w; if ws(A -B-B-A4)#0, For the case where 4, B
satisfy “canonical commutation relations” inequality

(2. 3) is just Heisenberg’s famous uncertainty relation. !

3. ENVELOPING ALGEBRAS AND POISSON
ALGEBRAS

Let L, be a real Lie algebra and L =L %L, its com-
plexification. If Bis a complex, associative algebra
we call 8 representation of L a linear map p: L~
such that

p(X) < p(Y) = p(¥) - p(X) =p([X,¥]), X,Y,[X,Y]inL,
(3.1)

In particular, 8 may be an algebra of linear operators
on some complex vectorspace V. Denote by T =T (L)
the complex tensor algebra over L with canonical map
¢: L —~T (L), and consider the two sided ideal § gen-
erated in ¥ by elements of the form

X)) ¥) = (V) o (X) - [X,¥Y]), X,Y in L. (3.2)

The guotient algebra U =U(L) of T by I is called the
universal enveloping algebra of L, There is a linear
map {:L -~ U defined by 1. We summarize the most im-
portant properties of t: L —~1U in the following proposi-
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tion which is a statement of well known results (see,
e.g., Ref. 10, Chap. 2, Ref. 11, Chap. 12.)

Proposition 2:
(I) The map { is an injective Il representation of L.

(II) For any B representation p of L there is a unique
homomorphism §: U~ @ of associative algebras such
that

p=p-1.
(I1I) Let # be a positive integer, and denote by 11" the

linear subspace of U generated by all elements of the
form

Zul,)?1°uv)}m,)?,:i(X,),X, inL, ZinCQ, wm=sn,

Then
W™ - W* is in U™*S,
and
W WS— WS W is in U™*! for W* in W, i=v,s.

(IV) The bilinear bracket operation: V, W~ [V, W]
=V -W-W.V satisfies:

[V,W]=_[W,7 V]y (3033.)
(v,w-w]=[V,W]- W +W-[V, W], (3.3b)
[V, [Vy, V5]] +eycl. =0. (3.3c)

(V) There exists a unique antilinear map o: U—1U
such that:

(i) gso=id, oV +{a+ib)W|=0(V)+(a~1ib) o(W),
(ii) o(V.-W)=a(W) .a(V), V., WinU,
(i) o(X)=-X, Xin L,

a,bin R,

We write T* for o(T).

An element T in U is called symmetric resp. anti-
symmetric if 7*=7T resp. T*=~T. It follows from
(V iii} alone that

[x*, v¥[*==[X,Y] for X,Y in L, (3.4)

since X, Y —~[X*, V*|* is bilinear and this equation holds
ou the real Lie subalgebra L,

The algebra U is in fact uniquely characterized (up to
ismorphism) by the existence of a Il representation
satisfying Proposition 3(II). ' This is the reason for
calling it universal,

Now let 8 be a complex, commutative associative
algebra. Bis called a Poisson algebra if there exists
a bilinear map : A, B—{A, B} of 8% 8 to B such that:

{A’B}:—{BrA}, (3.53,)
{4,B-B'}=1{A,B} B’ + B{A, B’} (3. 5b)
{4, {4,, At} +cyel=0. (3.5¢)

An example of a Poisson algebra is given by the algebra
of smooth complex valued functions on a nondegenerate
symplectic manifold with the Poisson bracket derived
from the symplectic form.”®

If Bis a Poisson algebra we call a 8 realization of
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L a linear map 7:L — B such that

(X)), oVt =in([X, Y]). (3.6)

An analog of Proposition 2 holds for B realizations.

Proposition 3: Let ¥ be the complex symmetric
tensor algebra over L, and 7 the canonical map
L%,

(I) There exists a bilinear map of A X A to N satisfy-
ing (3.5) such that 7 is an % realization of L.

(II) For any B realization 7 of L there exists a unique
homomorphism 7 of Poisson algebras, i.e., an alge-
braic homomorphism 7 : {— B such that {#(A4), #(B)}
=%({A, B}), which satisfies 7=%-7.

(I11) Let 9™ be the space of symmetric tensors of de-
gree n, Then

T7 < T% is in %7,

{17, 7%} is in €1 for 7% in %, i=v,s.

(IV) There exists a unique antilinear map 0: A —¥%
such that

F(X)=X==X, G(A-B)=0(A)-3(B),
A,Bin¥, X=1X), XinL,
The proof of Proposition 3, which may be less well

known than the corresponding results for enveloping
algebras, is given in the Appendix.

It follows from the Def. (3.6) and (3.4) that
1T, S**={T,S} for T,S in ¥,

since this is true for 7,S in ©{L). Hence the symmetric
elements in ¥ form a real Poisson subalgebra of ¥.

The Poisson algebra ¥ is in fact isomorphic to the
algebra B of complex polynomial functions on the real
dual L§ of L,. This isomorphism is given by the linear

map
m:X—~iPy, Px(v)=vX), X in L, 7y in L§,

The symmetric elements in A then correspond to real
valued functions of Lj. Let (X") be a real basis in L,.
Then the functions

P =Py~
are a set of coordinate functions on all of L%,
{3.7a)

In terms of these coordinates the Poisson bracket on
defined by the Poisson bracket on ¥ is given by the bi-
differential operator

IF,cl=2 aip,F*—q—sG-C{s-Pt, (3. )

st ap

where
[‘er,Xs] :E Crt‘s 'Xt.
t

We may as well take (3. 7) as a definition of the Poisson
bracket on B, show its independence of the basis
chosen, and verify properties (3.5a)—(3.5c) by explicit
calculation. However, this procedure offers little in-
sight into how the Poisson bracket on ¥ resp. P is re-
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lated to the bracket operation on U defined in
Proposition 2,

As was the case for the universal enveloping algebra,
the Poisson algebra ¥ is uniquely determined (up to
isomorphism) by the existence of an ¥ realization of L
satisfying Proposition (2.1I). Hence, we should call
(A, oo, e -}) the universal Poisson algebra over L,
although this terminology does not seem to be used in
the literature. [Note that we have not introduced any
condition on the Poisson bracket which would corre-
spond to the notion of nondegeneracy for the Poisson
algebra of smooth functions on a symplectic manifold.
Such a notion cannot be introduced within this purely
algebraic framework, where all algebras are finitely
generated. A typical example of a Poisson algebra
(which is the only one we shall deal with in this paper)
is the restriction of P to some orbit T of the coadjoint
action of the group defined by L, in L§. In general, it
is not possible to give a complete algebraic characteri-
zation of I'. In particular, the ideal of polynomials
which vanish on I’ may reduce to zero. In any case how-
ever the Poisson bracket as defined by (3. 7) may be ex-
tended to arbitrary smooth functions on I', and then de-
fines a nondegenerate bivector field on T, %]

Let us now describe an algebraic relation between
the universal algebras Il and ¥ and their bracket opera-
tions, which is of central importance for our discus-
sion of the classical limit, !1*12

For any positive integer »n consider the quotient space
and canonical projection:

g =ur/u"t, Y —8", B =C-1. (3.7)
The direct sum 8=1,,8" is a linear space,
Proposition 4:
(I) B is a complex commutative associative algebra

isomorphic to the symmetric tensor algebra % if a
multiplication law is defined by

(T a(T8) =a"*(T7 - T%), T!in W,
(I1) B is a Poisson algebra isomorphic to the Poisson
algebra % if the Poisson bracket is defined by
1 (@), 7T b =i YT Ts = TS 77y, THinRt.
(III) There exists a unique linear isomorphism
P:B—U such that
W (X 711()2)]:}2- X, XinL.

¢ has the properties:

@) U=2 (B, T y(BY=B", B in®".

=0
(i) ¢{r'(X), BY) =X, 9(®B)}, Xin L, Bin 8.
(iii) doo =024,

The proofs of this proposition may be found in Ref. 12
and Ref, 10, Chap. 2. B is called the associated algebra
of U.

Let us just remark here that by Proposition 4 the im-
portant properties (3.5a)—(3.5¢) of the Poisson bracket
turn out to be a direct consequence of the properties
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(8, 3a)— (3. 3b) which hold for the “commutator” bracket
in any associative algebra.

The linear iscmorphism ¢ is not multiplicative, i.e.,
in general

4B+ By} = ¥(By « B) # Y(B) « Y(B,).

On this purely algebraic level ¢ is a unique quantization
map, while its inverse describes the classical limit.
(The inverse map ¢! may be used to define a general-
ized Moyal bracket on 8, which is just the image under
“J/* of the commutator bracket on U. The Moyal bracket
then is a deformation of the Poisson bracket on 8, For
an approach to quantization along these lines see

Refs. 8 and 9.)

We shall henceforth identify the three isomorphic
Poisson algebras ¥, B, and B. In particular, we dencte
for any element 7" in U" by 7"(7"") the corresponding
camplex valued polynomial on L¥.

4. REPRESENTATIONS OF 1 AND THEIR
CLASSICAL LIMIT

Let D be a dense linear subspace of some complex
Hilbert space #/ with scalar product (~+.,-++}, and
p:L~L in D be a representation of L by linear opera-
tors on D satisfying

(f,pX)2)=(p(x*)f,g), f,& 0D, X inD. (4.1)

In particular the elements in L resp, ¢L; are repre-
sented by antisymmetric resp. symmetric gperators.

By Proposition 2 we have a unique representation p
of U satisfying

(£, 0(T)g) =(p(T*)f,g), f,ginD, Tin U.

Assume now that the symmetric operators p(X), X in
iL;, have unique selfadjoint extensions, which are the
basic observables of some quantum theory. [Note that
even in this case there may exist symmetric operators
p(T), T in ¥ which do not have any self-adjoint exten-
sion (Ref, 14, Chap, X.) These operators are not quan-
tum observables in the strict sense of the term, al-
though all their expectation values for vector states in
D are real, | In order to define the classical limit of this
theory let us make precise the concept of “limit of large
quantum numbers.”’

(4.2)

Let us introduce a real positive parameter X measur-
ing the order of magnitude of the basic observables in a
vector state w* for a sequence (p*) of representations
of U:

Um AT A X) =iy(X) =7 (X)(y), X in L,,

PR

MDY=, M), Find, Tmu,

¥ in L¥.
(4, 3}

The physical interpretation of this limit should be clear-
ly understood. Assume we have chosen a basis (X7), in
L, such that all structure constants are of order unity.
This would correspond to a choice of “microscopic
units” for the physical quantities defined by the sym-
metric elements -~ X", ». For physical states where

all these quantities assume large values of order A > 1
we may choose “macroscopic units” by introducing a
basis (A"1X"), = (¥"), with structure constants of order
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X1, The real numbers (X7} of order unity are then
assumed to approximate the expectation values of the
“rescaled” quantities —iY”, # in the sense of (4. 3).

Now assume that the dispersions a? for all basic ob-
servables are of the same order of magnitude, which is
given by their lower bound in (2. 2), Then A%~ ip(X)=2,
hence

limA2A2[= ip(X)]

A=

=lim{A 2w (- iX)(= iX)] = 71(= iX) - 71 (- iX)()} =0

A~ w
(4.4)
for X in L, by (4. 3).

In this case a limit corresponding to (4.3) does exist
for arbitrary elements in .

Proposition 5: Let (p*, w*), be a sequence of linear
representations p* of U satisfying (4. 2), with vector
state w*, Assume that:

1) lmaoMX) =r'(X)0),

(ii) PEA'?w‘(XeX):[nl(X)-w’(X)](y), X iniL,, v in L},
(iti) lim A (T™) | <o, T™ in U™,m.

Then

Lim AT = 77T ) (v},

A~

77 in @™, (4.5)

Pyoof: By induction on m, Assume (4.5) holds for
some m, Elements in U™! are linear combinations of
elements of the form

XeTm™ X inily, T™inU™,
Hence,
AN (X« T
=27 (X)) ()wMT™) + X mwMAX < 71 (X) ()] T}
=W f W, =W,
However,
oy |2 < MK = A )@ PHe A T T = 0
as A —« by assumptions (ii) and (iii)., Hence,
limw=limw, =[r'(X) - 7T }(r) =™ 0x - T™)(y),
Q.E.D,

Proposition 6: Under the assumptions of Proposition
5 we have

Lm i s XA (VT e WE = WS VT)

ANvw
= {7, (W),
Pyoof: Apply Proposition 5 and Praposition 4(11).
Q.E.D.

(4.6)

We may employ the quantization map ¢ to give an
equivalent version of Proposition 5 resp, 6 applying
to arbitrary elements in i1, Consider the “scaling
transformation” A :L—~ L,

X -%x=21-X, 0<rinR, (4.7
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and denote by the same symbol its unique extension to
the symmetric tensor algebra ¥ = 9,

XeB"=)"B" B"in®".
Then we may replace (4.5) by

limo{#(X - B)]=B(), Bin 8=%. (4.5

Proposition T: Under the assumptions of Proposition
5 assume furthermore that the representation p* of L
restricted to Ly can be integrated to a unitary repre~
sentation of the group @ belonging to L;,. Let g be an
element of @, and T} the unitary representative of g
in the representation obtained. Then THD?) is in the
domain of definition and invariant under the self-adjoint
extension of p*(X) for any X in iL,. Call p} the corre-
sponding representation of 11 on T3(D"). Then the vector
state w}

~1 ~ -1
wp(V) =Ty f* p}(V) Ty 1)
satisfies all assumptions of Proposition 5 with

}i}gwE(K“iX) =y(m(a, - X)) =1 X)) (af - v), (4.8)

where @ is the adjoint representation of @ on L.

- Proof: Let © =(k,;) be a one-parameter subgroup of
®, ¢, the transformation of right multiplication by h,
on &, and X the left invariant vector field on ® belong-
ing to 9,

lim?l[Foq),—F]:X(F), F smooth on ®.

t e

For some element g in & consider the subgroup $’
=(gh, g"!) with corresponding group of transformations
(¢7) satisfying

a,=X(F):X’(F):}i‘ni(l/t)(Fo @, ~F), wherea:g—~a,

is the adjoint representation. Now let p be a represen-
tation of L, as above, and denote by p(iX) the self-
adjoint extension of p(iX), X in L,

Then by Stone’s theorem (Ref. 15, Sec. 5c) some
vector f is in the domain of definition of j(iX) if and only
if

lim (7, <~ f)=F' = Blix) f

does exist in the norm topology on /. In particular this
holds for f in D, and it follows that

Lim § T3 Ty £ =)
=lim (T, 175 - T3')
=pUX) T3 f, hi=gheg™,

does exist for any f in D, X in L, and
T3'plicry « X)f =p(X) T3S -

This shows the invariance of 7;'0 under all operators
p(iX), X in L. Furthermore,

(T7f, PV TF ) =(Ff, D&, V) 1),
where @ is the unique representations of ® on Ul defined

by o. Q.E.D.
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The dense set of state vectors

fa=T:f*, f*inD* g in@®, (4.9)

is a system of coherent state vectors in the sense of
Ref. 9, By Proposition 7 this system corresponds in
the limit A — < to a certain orbit T of the co-adjoint
action of & on L¥,

}imwgzaz‘ +y isinT, yin L, g in @. (4.10)
In the same sense the universal enveloping algebra U
when considered on this system of states is “con-
tracted” to a commutative Poisson algebra ¥ of smooth
functions on this orbit,

Lmwl{p(h - B =Blaf y), Bin®=%$, (4.11)

The orbit I" is a nondegenerate symplectic manifold, 15
and is just the phase space of the classical system ob-
tained in the limit,

In the next section we study some examples for
which

wh=w"for a¥cy=y, A finite. (4.12)

The corresponding systems of coherent states have been
discussed in Ref, 9. We note that by (4.12) there is a
direct correspondence between the system of states and
T, by which the & invariant symplectic measure on I’
defines a corresponding measure on the system of co-
herent states.

5. EXAMPLES AND COUNTEREXAMPLES

A. The special nilpotent algebra

In the simplest case L, is defined in terms of a suit-

able basis (X,, Xy, X,) by the Lie brackets
[, Xp)=X,, [X,,X;)=[X,, X,]=0. (5.1)

There does exist a unique representation p of L by anti-
symmetric operators which can be integrated to a rep-

resentation of the group ®(L) =@ and for which
Ro=ip(X,)=1. (5.2)

In this representation there does exist, for any real

¥ >0, a unique vector f satisfying the conditions of
Proposition 1 for the symmetric operators R, =ip(X,),
v =1,2 such that

(Ry+1ir-Ry)f=0.

1t follows that:
wiR)) =ws(Ry) =0, weRy)=1,
wpRy <Ry) =7, ws(Ry-Ry)=7".

(5. 3a)
(5.3b)

The vector f is contained in a unique minimal invariant
domain D of definition for the operators R,, v=0,1, 2,
which we use to define the representation p of 1. Now
consider for any real » > 0 the isomorphism of L,

X, =X, "Xp=2X,, X;.="AX,. (5.4)

Then the sequence (p, w*} of representations defined by
oMX)=p(*X), Xin L,
oMT)=(f,X(T)f), Tinll,

satisfies all conditions of Proposition 5 with v in L,

{(5.5)
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defined by
T (iXe) () =1,
X)) =7 (1X,)(v) =0.

For any A, the set of vectors (T}-f, g in®), defines
a system of coherent states w} in the sense of Ref. 9.
One has

-1 L =1

wi(iX,) = (T}f, P*iX,) T2f),
=2A, for r=0,

r=1 s 2,

{5.8)

(5.7)

:>‘°0r(g)’ Or(g) in R.

In terms of the original representation § we have

(-Tlé‘f, BUx,) T2 ), (5.8)

=1, for » =0,

=Wo,(g), forr=1,2,

This shows how the usual discussion of the classical
limit for the special nilpotent algebras? which uses the
the representation p only, together with the sequence
of coherent state vectors (T;f), is related to our gen-
eral group theoretical formulation,

B. The algebra of SU(2)

The algebra is given in terms of a basis (X!, X?, X9)
by

[x, X =x3, [x%,Xx3)=x', [X% X']=X2, (5.9)

The irreducible unitary representation of the group are
finite dimensional and classified by positive integers .
Denote by p™ the corresponding representation of the
algebra. There does exist a unique vector f™ such that

[om(ix") +ipm(iX?)] " =0,
pmEXAY fr=gmf ™,
It follows from (2. 3) that
WX =w™(iX?) =0, w™iX})=4%m,
W™ (X iXY) = wm (X XY =t

Hence the sequence (p™, w™) satisfies the conditions (i),
(ii) of Proposition 5, and it is not d1ff1cu1t to show that
(1i1) holds as well. Agaln, the vectors T"‘ ™ gin @,
define a system of coherent states in the sense of Ref,
9. The phase space I' is just the orbit defined by

oyt 492yl 4930y =1,

X)), (6.10)

Y =Pyr(y)=7(- y in L,

C. The algebra of SL (2 IR)

The algebra L is given in terms of a basis X?, X', X?)
by

0, x']=x%, [x,x*]=-x° [x%x°=x!]. (5.11)

Representations of L, which can be integrated to unitary
representations of the covering group & =SL(2,IR) have
been first studied by Bargmann, '* We consider here the
so-called discrete classes only,

Denote by H™ the self-adjoint operator corresponding
to the symmetric element iX", r=0,1,2,
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In the representation called D} by Bargmann there
does exist a unique vector f* such that

Gf*={H!' - H) =0,

HOP =2 f*, a>0, (5.12)
hence

wp(HY) = wi(HY) =0, wy(H") =21, (5.13)
From Proposition 1 we conclude that

wf(Hl-Hi):wf(Honz)zé'x. (5.14)

There is a unique minimal invariant domain of definition
D* for all operators H", »=0,1,2 containing f* which we
use to define the representation p* of U. Again all condi-
tions of Propositions 5 and 7 are fulfilled, and we obtain

limw* =y,
Mo (5.15)

W=, Yl=y'=0, ¥ =Pxr(y)=—in(X)(¥).

The phase space I' in L¥ is the submanifold defined by

the equations

,),0'.)/0_.)/1..}/1_720}/2:%’ ')’0<O. (5:16)

Using techniques described in Refs, 16 and 17 it can be
shown that T is isomorphic to the symplectic manifold
of timelike geodesics on a relativistic spaceform of
dimension two which has @ as a group of motions.

D. The special nilpotent algebra: A counterexample

Consider the Hilbert space #/ =L%0,1) and the domain
D of infinitely often differentiable functiouns:

D ={f in C(0,1); f(0) =f(1)=0}. (5.17)
On D we define the symmetric operators

Ryf=f, (5.18a)

RN =i 7 f(x) (5.18b)

Ry fHx) =xf(x). (5.18¢c)

The map p:X, —~-iR,, ¥=0,1,2 defines a represen-
tation of the special nilpotent algebra of Sec., 5A and of
its enveloping algebra U.

For vectors f in D, Heisenberg’s uncertainty rela-
tions hold,

AZ(R1)°A2(R2)»>/%- (5.19)

Since R, is bounded, p cannot be integrated to a repre-

sentation of the corresponding group. On the other

hand there does exist for any real number o a self-

adjoint extension R of R, with discrete spectrum, the

eigenvectors of which are given by the functions

S (x) = exp(~ ia) < exp(- 2mimx), RyfE=(a+ 2mm)fe .
(5.20)

For any such vector the vector R, f,; is not in the do-
main of R, hence Proposition 1 does not apply to
such vectors and, in fact, we have

ANR) =0, f=f2.

For the sequence p* of representations constructed as

(5.21)
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in Sec. 5 A we have
pMiX,) = VA p*(EX,) = VX R,,
hence

%imk"wx(in) =0,
for any sequence of vector states, since R, is bounded.
This shows that a classical limit leading to the usual
phase space of the special nilpotent algebra does not
exist for this type of quantum theory.

A successful discussion of the classical limit in this
situation can be based on a different algebra defined
by the equations

[YO’ Y1]=Y2y [YO; Y2]="Y1) [YI;Y2]=0: (5-22)
with a representation p* on D given by
2
A . -9
P o) fl) = o= flx),
(5.23)

oMY ) s flx) — A sing < f(x),
pM(Y,) 1 flx) — ix cosx « f(x).

We leave it as an exercise to the reader to demonstrate
the existence of a classical limit in this case.

APPENDIX: PROOF OF PROPOSITION 3

% is generated by the elements in € -1 and 7(L). For
any linear map 8: L — ¥ the linear map f: A~ defined
by

B, o+ Xp) = 2 Kpo e ) <o X,y B =0, X =T0X)

(A1)

is a derivation on ¥, i.e., satisfies E(S TY=BES)-T
+8 < B(T). Conversely any derivation on ¥ is uniquely _
determined by its restriction to ©(L) via (Al), For X,Y
in (L) define the bracket operation by

X, v1=ilX, Y]=agY), (A2)

where ay is linear. Then &y is a derivation, and we
may for A fixed in % consider the map y,: X ~ dx(4),
Putting

{B,A}=74(B) (A3)

we can easily see that the bracket thus defined satisfies
(3.5a) and (3.5b). As for (3. 5c) we observe that the
trilinear map

51AL Ay Ay~ AL Ay, Al + {4y, A, AT+ {4, {4, Ao

is a derivation on any of its arguments if the remaining
arguments are kept fixed. It follows that 6 vanishes
identically since it vanishes for 4, in L), i=1,2,3,
by Jacobi’s identity. Finally let 7 be a 8 realization
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and 7 : ¥ — B the unique homomorphism such that
m=7°T. Then we have in 8,

[7(X), 70} = {m(X), 7(¥)} = in (X, Y ) =7(X, D).

It follows that the image of ¥ in B under 7 is a Poisson
subalgebra generated by elements z -1, #(X), Z in C,
X in L, Since any derivation on this subalgebra is
uniquely determined by its action on a set of genera-
tors we conclude as above that

{#(X), #(B)}=7{X, B}, and finally
{#(A), 7(B)}=7({A,B}), for X in L, A,Bin %,

The proofs of (III} and (IV) are straightforward and will
not be spelled out here, 2 Q.E.D.
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It is proved that if (M,g,,) is an exact vacuum solution of Einstein’s equation, I, a null vector field and if
1,1, satisfies the linearized equation on background (M,g,,), then g, + /.1, is an exact vacuum solution.
Applications to the search for asymptotically flat spacetimes are discussed.

. INTRODUCTION

It is of interest in general relativity to discover and
interpret solutions of Einstein’s equation. Additional
solutions may provide more insight into the theory;
their interpretation may permit the description of addi-
tional physical systems, We present here a result which
might contribute to the discovery of more solutions as
well as their physical interpretation, Specifically it
selects a preferred subfamily of the linearized solu-
tions —namely, certain linearized solutions which lead
to exact solutions. This result might be useful because,
while it is easier to obtain linearized solutions, exact
solutions are, of course, the more interesting.

In Sec. II we prove the main result: if, for /_ a null
vector field, 7,7, is a linearized solution on the vacuum
background g, then g,,+1,, is an exact vacuum solu-
tion. In Sec. III we point out that this result might be
useful in the search for asymptotically flat spacetimes.

Il. THE THEOREM

Let (M, g,,) be a one -parameter family of spacetimes,
i.e., a C%, four-dimensional manifold M with nonde-
generate metrics g,,{\) of the Lorentz signature.
Assume that for every value of the parameter A the
metric g,,(}) satisfies the vacuum Einstein equation
R_,(g,,(\))=0." Equating (d/d\)(R,,[g (A) ]|\, to zero,
we obtain

VY Hg =2V7V K

atoym

+V, Vg™, =0, )

where g,,=g,,{0) is the background metric, Y, the de-
rivative operator associated with g,,, and &, = (d/d\)
X(g,,(A)) 1.0 is the first order change of the metric g,
along the family g,,(A). Equation (1) is called the lin-
earized equation; its solutions linearized fields, That is
(M, g,, + Ah,,) is an approximate (for A — 0) solution of
the Einstein equation,

Our result is the following:

Theovem 1: Let (M, g,,) be an exact vacuum solution
of Einstein’s equation and let /, be a null vector field
such that h,,=1,, satisfies the linearized equation (1).
Then g,, +1,/, is an exact vacuum solution.

The theorem says that in the class of linearized fields

#Supported by the NSF contract PHY 76~81102 with the Uni-
versity of Chicago.

bpresented as part of a thesis to the Department of Physics,
University of Chicago, in partial fulfillment of the require-
ment for the Ph.D, degree.

1607 J. Math. Phys. 19(7), July 1978

0022-2488/78/1907-1607$1.00

there is a preferred subclass, namely those of the form
1,0, for some null vector field /,. Furthermore, the
structure of the Einstein equation is such that g,, +1,/,,
which ought for ““small” /, to represent an approximate
solution, is, in fact, always an exact solution,

The proof consists of substituting g,, +1,/, into
Einstein’s equation, expanding and using the linearized
equation (1).

We begin with Eq. (1) on the field /,/,, i.e.,

VIVl ) =2V7V [l (=0, 2)
Set x*=["V_I*. Contracting (2) with /"/* we obtain x"x,=0
while the nullness of /* yields /,x*=0. So, /* and x*, as

two real, null, and mutually orthogonal vector fields,
must be parallel, i.e., [* must be geodesic. Now define

"V, %= ¢I°, V"I, =6,

Then contraction of Eq. (2) with /? yields

(VNG L) = = (b +6) — (0 + 6)d (3)
while the definition of 6 yields

(VN1 )= b~ 6+ 06, (4)
where a dot denotes the directional derivative along /°,

We next obtain the Ricci tensor of ¢/,. First note that,
since [, is null, g,/,=g,,+1,[, is again a nondegenerate
metric, and in fact its inverse is g’"’= ¢** — I°/®, where
Z(I — gaml

¢ m*

Let V, denote the derivative operator compatible with
g4 The connection tensor field® C7, which relates the
two derivative operators, V, and V/, is easily found to
be

Ch= ", do T l(avb)lm - l(a\'/""lb) + (blmlnla (5)

which, because of the nullness of /°, satisfies C", =0,
I°Cy,= ™, 1,,C%= - ¢l I, The Ricci tensor of Saps
on the other hand, is given by

R,=R,+2V.,C7 +2C7,Ch . (6)

[m™~ale

Substituting (5) into (6), using (2), (3), (4), and R,,=0,
we obtain finally R),=0. QED

Note that the condition that a linearized field h,, be of
the form /7, with /, null is not gauge invariant, i.e., it
is not invariant under the addition to %, of the symme-
trized derivative of a vector field. Thus, it is con-
ceivable that one could use the gauge freedom to make
applicable the hypothesis of the theorem, i.e., to have,
given ki, h,, +2V &, of the form //,, for a suitable
choice of £,.
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We compare Theorem 1 with other known results.
Kerr and Schild® found all vacuum solutions of Einstein’s
equation of the form n,,+1,,, where #,, is flat and /, is
a null vector field whose divergence and twist do not
both vanish at any point. What Theorem 1 says then is
that the Kerr —Schild metrics could have been obtained
by just solving the linearized equation for /,/,.* They,
however, obtained these metrics using a tetrad
approach, in which the linearity of the equations is not
transparent. Theorem 1 is even stronger: It is applica-
ble also in a curved background.

Itl. ASYMPTOTICALLY FLAT SPACETIMES

An extensively studied class of solutions in general
relativity are those which are asymptotically flat at null
infinity,® i.e., which describe the spacetime of an
isolated body. It turns out that it is rather difficult to
find asymptotically flat solutions of Einstein’s equation.
Indeed, although this notion was developed in order to
study gravitational radiation, no exact asymptotically
flat radiative solution is yet available. In this section we
remark that Theorem 1 may be useful in the search for
asymptotically flat spacetimes.

Let (M, g,,) be an asymptotically flat spacetime, ® so
in particular there exists a manifold /7= MU ¢ with
smooth metric g,, and smooth scalar £ such that on M
F,=9%g,,and on ¢ =0, ii,=V,Q is nonzero and null
and Vj,=0. Let ,, be a linearized field on (M, g,,).
Then /,, is said to preserve asymptotic flatness to first
order if @°%,, admits a smooth extension to ¢ such that
Qh, i1"i1* 1, =0, i.e., if the conditions in the definition
are satisfied to first order.” Consider now the special
case in which the linearized field is of the form 7/,.
Obviously, it preserves asymptotic flatness to first
order if and only if

(i) @/, admits a smooth extension to ¢ and (ii) there
it is a multiple of i, i.e., QI 1%, =0, Actually, (ii) is
a consequence of (i) and the linearized equation on //,.
An analogous statement is also true in the full theory.

Theovem 2: Let (M, g,,) be a vacuum asymptotically
flat spacetime and let /, be a null vector field on M such
that 7,7, satisfies the linearized equation on (M, g,,). If
the vector field ©/, admits a smooth extension to ¢,
then the solution (M, .+ 1.,) is also asymptotically
flat.®

Pyoof: Since (M, g,,)} is asymptotically flat, there is
a manifold with boundary 37 = MU ¢ and a choice of a
conformal factor @ such that the conditions in the defi-
nition of Ref. 6 are satisfied. We choose the same
manifold A7 and the same conformal factor  to prove
asymptotic flatness of (M, g, =g,, +{,/,). Since smooth-
ness of Q/, implies smoothness of g, = Q%¢.,, we only
have to show that j7, is null on ¢ with respect to g/, and
that V,#,=0 on ¢.

For the first set § =8Ql,, so E is a smooth null vector
field on M; moreover, § is geodesic in (M, 7,,). Define
$, €, Kby gmv g _<I>§ 8= V"‘g,,, and E’"n =K. Equa-
t10n (3) expressed in terms of fields on (i7,3,,) is
6K + QNVmL"(V, E) + QY (& +6) —4QL"V, K

F XD +0)d - 20K (H +0) =0,
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Since the fields K, &, €, {™ are automically smooth

on all of M, this equation implies that K vanishes on ¢.
Thus, &'*,#,le =[§"7, 0%, -K*];=0, i.e., the nullness
of 7, is preserved.

For the second note that, since g, satisfies the
vacuum Einstein’s equation, we have that Van ly =0if
and only if limy Q'5""#7,7i,=0.° But the latter follows
from K1, =0 and lim, Q' g"%7,i7, = 0. a

We consider now the relationship between the asymp-
totic gravitational fields of the two metrics g,, and g,
The Einstein equation and asymptotic flatness imply that
the Weyl tensor of &,, C,,,, vanishes on ¢, so Q7'C,,,
admits a smooth extension to ¢. The asymptotic gravi-
tational field is then described by

K W= th C

am Dn

[For example, in the Newman—Penrose notation, K

= - 2(ReW) i, 71, + 2V 1y, + 20 [, = W T, — WO T,

¥ is the radiation field. The Bondi mass is essentlally
the integral of ¥J over a cross section of ¢, | Thus, a
spacetime is free of gravitational radiation if and only
if K, =#,V,, for some vector field ¥, tangential to ¢.
We shall in fact show that

on ¢. (M

So, the radiation fields of the two spacetimes g,, and g,
are the same—in particular either both possess gravi-
tational radiation or neither —but in general, given a
cross section of ¢, they may have different Bondi
masses,

P
K., ~K,, ~1n,,

Finally, we sketch the proof of (7). Using the relation
Clp'=C,p” —29,C A, +2CT ,C5 between the respective
Weyl tensors of the (vacuum) metrics g/, and yg,,, using

Eq. (5) and the nullness of [, it is easy to show that
VI~ (8)

Expressing (8) in terms of fields in the conformally
completed spacetime and using that on ¢ @/, and 77, are
parallel (because they are both null and orthogonal on
J), we obtain (7). Q.E.D.

(<

abed T rwcri

tV. DISCUSSION

Theorem 1 might be a useful tool in the search for
exact solutions of the Einstein vacuum equation. When-
ever the perturbations, i.e., the linearized solutions,
of some spacetime have been obtained, one can ask for
those perturbations which lead to exact solutions. If the
original solution is asymptotically flat, one can possibly
obtain additional asymptotically flat spacetimes. The
main source of difficulty in the search of the perturba-
tions of the type considered here is the fact that the
condition /,, =1/, with 7, null is neither gauge invariant
nor linear. Theorem 1 might also be a useful tool in
the analysis and interpretation of certain known exact
solutions. The idea would be to describe these solu-
tions, via Theorem 1, in terms of linearized fields on
a well understood background. In particular, the Kerr-
Schild family and the plane wave solutions—which are
precisely the vacuum solutions of the form n,, +/,/, with
n,, flat and I, some null vector field—can be studied as
perturbations of flat spacetime.
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How large is the class of solutions that can be ob-
tained via Theorem 1? It is apparently possible for a
null /¢ satisfying the hypothesis of Theorem 1 to be nei-
ther a principal null direction of the Weyl tensor of g,,
nor of g,,; the class may therefore be quite large.
Unfortunately, we do not have any explicit examples.
So, to get some feeling for how large is the class of
solutions one might obtain from Theorem 1, we look at
the Kerr —Schild class of solutions. These spacetimes
are all algebraically special (in fact, of types [2,1,1]
or [2,2]) and all admit at least one Killing field. The
general solution in this class is determined by one
arbitrary analytic function of one complex variable. For
the present spacetimes, i.e., with an arbitrary curved
background, one can prove the following. First, direct-
ly from Eq. (8), if I is a repeated principal null direc-
tion of the Weyl tensor of g, then {° must also be a
repeated principal null direction of the Weyl tensor of
gly. Second, for I° a principal but not a repeated princi-
pal null direction of the Weyl tensor of g,,, then [° need
not even be a principal null direction of gf,. Further-
more, again for [° principal but not repeated, {* must
have zero twist. ! We do not know any further simple
consequences on g4, and I° of the assumption that both
Sa» and gqp +1,1, are vacuum solutions. In fact, we know
of no application of Theorem 1 to spacetimes other
than the Kerr—Schild class and the plane waves.

Why does Einstein’s equation have this curious
feature?
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N-body quantum scattering theory in two Hilbert spaces.
Il. Some asymptotic limits
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Within the framework of two-Hilbert space scattering theory the existence of the strong Abel limit of a
certain operator is proved, leading to the following results. A generalized Lippmann identity is derived
that is valid for all channels, rather than only two-body channels. On shell equivalence of the prior, post
and AGS transition operators is rigorously proved, thus closing a gap in previous proofs. Results
concerning the existence of the scattering operator as a strong, rather than weak, Abel limit are
presented, and their implications with respect to the problem of unitarity are discussed. Finally, the

possibility of exploiting operator limits of the Obermann-Wollenberg type is studied, with negative

results.

I. INTRODUCTION

In time-dependent nonrelativistic multichannel
quantum scattering theory the question of in what sense
the operators

W, (1) = Py exp(x iHgt) exp(F iH P, =65, (1.1)

approach zero as {—~ = has proved an interesting one.
Here the operators H, and H, are channel Hamiltonians,
and the operators P, and P, are the orthogonal pro-
jections of the N-particle Hilbert space //, onto the
respective channel subspaces. The symbol 6,, denotes
the Kronecker delta. An early result was that'-?

w-lim Wi () =0 (8,a =arbitrary channels), (1.2)
t o
which is important because it implies that the ranges of
the channel wave operators £, are orthogonal sub-
spaces of //,. That is,

QY =06,,P, and *Q=06,,P 1.3)

ae
Later, in a paper on the problem of asymptotic com-
pleteness, Combes® proved that

s-lim W, (1) =0 (3, a =two-body channels). (1.4)
t=o

The matter now rests at this point.

It is natural to ask if the restriction in Eq. (1.4) can
be extended to include breakup channels. The detailed
forms for H, and P, given, for example, by Hunziker®
show that in Eq. (1.1) the operators H, and H, may be
replaced by commauting self-adjoint operators 7, and
T,. These commuting operators are, up to a constant,
the kinetic energy operators of the various channels.
The operator 7, has the further property that it com-
mutes not only with P, but also with the projections
P, for all breakup channels of a. Thus, if g is a break-
up channel of &, W2 (Dl =|P,P,ll for all ¢ in A .
Since P,P, is not, in general, zero, it follows that the
strong limit of W%_(¢) cannot be zero. Indeed, because
of Eq. (1.2), the strong limit cannot even exist. Thus,
in any multichannel theory in which breakup channels

are included, the channels in Eq. (1.4) must be re-
stricted so that 3 is not a breakup channel of «.°

Among the interesting implications of the result of
the foregoing paragraph is that the method used by
Combes to prove asymptotic completeness fails at en-
ergies A, above the breakup threshold. An essential
ingredient in his proof is that for all channels 3 that are
open at energy A, the adjoint wave operators Q4* satisfy

QL () = s-lim P exp(x iH,t) explF iH ()P E(\).
(1.5)

Here H,, is the full N-particle Hamiltonian with spec-
tral family £,(-), and P, is the orthogonal projection of
# y onto the subspace of absolute continuity of H,.
Multiplying Eq. (1.5) from the right by £t and applying
standard techniques of abstract time-dependent scatter-
ing theory, one obtains

s-lim W3 (1)E,(A,) =0 (3, =open channels), (1.6)
to
as a necessary consequence of Eq. (1.5), Here E_(°)
denotes the spectral family of H,. But the argument
of the preceding paragraph is precisely that the strong
limit does not exist if 8 is a breakup channel of @. One
is forced to conclude that Eq. (1.5) is not true above
the breakup threshold, a conclusion agreeing with pre-
vious less general results.’

Our curiosity being thus aroused, and motivated by
other problems we encountered in a recent paper,’ we
decided to study strong Abel limits of the operators
W, (/). This paper contains the results of our study.

In Sec. 2 we formulate the problem in a two Hilbert
space framework and prove (Theorem 1) that the two
Hilbert space analog of W, (/) has zero as a strong
Abel limit. The proof requires that certain estimates
be uniform in the channel indices, which forces us to
introduce a technical assumption, Assumption ().
Concerning this unwanted intrusion, we are consoled
by the fact that most physical systems appear to satisfy
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the assumption. In particular, if only a finite number
of channels are included, the assumption is satisfied.

In Sec. 3 we discuss some of the ramifications of
Theorem 1.

We show (Theorem 2) in Sec. 3A that a generalized
Lippmann identity®® is an almost immediate conse~
quence of Theorem 1. This identity has been used fre-
quently in recent work on the N-particle problem,°-**
The version used there is, however, valid only for two-
body channels,!* while the version given by Theorem 2
is valid for arbitrary channels.

In Sec. 3B we prove {(Theorem 3) that a certain sym-
metric transition operator T gives the same scattering
operator as certain asymmetric operators T%*’, The
symmetric operator T is the two Hilbert space version
of the transition operators of Alt, Grassberger, and
Sandhas,'°'!® while the asymmaetric operators T cor-
respond to the prior and post operators used by
Lovelace.'”

Arguments for this equivalence have long been
known, 1*15=17 and typically go as follows. One supposes
that T (E+ie) and T2 (E +ie) are two candidates,
so-called off shell extensions, for the transition op-
erator from channel o to channel 5. The difference of
the two is then shown to have the form

T (E+ide) = TR (E +ie) = A, (E+i0)[E +ie—H_],
Ba Ba Bo a
1.7

where 4,4,(z) is an operator-valued function that is
analytic in a neighborhood of the energy shell. Then,
since [E + e —Ha] vanishes on the energy shell, and
since 4,,(2) is well behaved on the energy shell, the
difference in Eq. (1.7) is asserted to vanish on the en-
ergy shell. This is taken to mean that 7{}’and 72 cor-
respond to the same scattering operator,

The proof that such an argument is flawed!® is by
counterexample. Let A,,(z) =Q4*P,. This is a
particularly nice operator-valued analytic function,
being bounded and independent of z. But with this choice
of Ay, the right side of Eq. (1.7) not only does not give
zero contribution to the scattering operator Sga» but
gives S, itself.®

The mathematically correct procedure is first to
substitute the difference in Eq. (1.7) into the spectral
integrals which relate transition operators Tpo(E +i€)
to the scattering operator Sgas and then to prove that
the limit as e — 0 is zero, We use this rigorous
procedure in Sec. 3B, thereby closing a gap in the
previous proofs,

Section 3C is concerned with a further question con-
cerning the spectral integrals relating the two Hilbert
space transition operators T(E +ie) and T’ (E +i€) to
the scattering operator S. It has been proved® that the
spectral integrals are first to be evaluated and then the
limit €~ 0 taken in the weak operator topology. If the
formulas are true only in the weak topology, then prob-
lems are posed® for the standard time-independent proof
of the unitarity of S, Hence the question arises whether
the formulas are actually valid in the strong topology.
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Section 3C contains the results (Theorems 4, 5, and 6)
that we can offer on the topic.

Finally, in Sec 3D we discuss a different limit process
that was introduced by Obermann and Wollenberg. '
Their limit is intermediate in “strength” between the
strong limit as /= and the strong Abel limit. We con-
clude (Theorem 7) that most of the limits sought in this
paper do not exist in their sense.

2. THE MAIN THEOREM
The notation of Ref. 7 is adopted.

The dynamics of the full N-particle system is
specified by the Hamiltonian H,, which is a selfadjoint
operator on the full N-particle Hilbert space #y. The
spectral family of Hy is denoted by E (1),

Asymptotically the particles are grouped into clusters.
For a given clustering A of particles there is a subspace
# 4 of Hy that contains the asymptotic states with that
clustering. The projection operator P, that projects
v onto /4 can be written

PA=E(A)PG’ (2.1)

where the strong topology sum is over channels o with
clustering A, and where P, is the projection of //y onto
the subspace 4, of asymptotic states appropriate to
channel a. For a given clustering A the various P,

are mutually orthogonal,

The subspaces #, are combined into a direct sum
space,

H5§HA7 (2-2)

which is one of the two Hilbert spaces of the theory,
the other being //y. A (singular) mapping J: 4~/ is
defined by

J&=20, (2.3)
A

for all $=,¢, in /4. The adjoint J* of J is then given
by

THE=DP 4y (2.4)

for all ¥ in Hy.
The asymptotic cluster Hamiltonians H , have the form
{2.5)

The operators Hj are sums of Laplacians in appropriate
variables and commute with P4. The operators H, have
on /4 the form given by

(
HAPA:%> ““KaPa,

Hy=HY+H,.

(2.6)

The A, are sums of eigenvalues of appropriate subsystem
Hamiltonians. The cluster Hamiltonians are combined
into an operator H that is defined on 4/ by

H@:?HA(,@A, (2.7)

The spectral family of the self-adjoint operator H is
denoted by E(X).
Wave operators ©* are now defined by

Q= ts:tlimﬂ(t), (2.8}
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where £(t) is defined by

Q(f) = exp(iH yt)J exp(- iHt) . (2.9)
These wave operators are partial isometries,
Q*Q* =1 and -QtQ**:ETV, (2.10)

where Iis the identity on #/ and E3 are the orthogonal
projections of 4 onto the ranges of the wave operators
O,

The adjoint wave operators Q* satisfy

QF = w-1imQ*{f).
tt o

where 2*(f) is the adjoint of Q(¢) defined in Eq. (2.9).
As we have seen in Sec. 1 the weak limit in Eqg. (2.11)
may not, in general, be replaced by the strong limit.

{2.11)

The two Hilbert space analog of Wi, (f) defined in Eq.
(1.1) is the operator

W)= Q¥ (D) ~ I = exp(GHNI*T = 1) exp(- iH{).(2.12)

It is now necessary to assume something about the set
of numbers A, in Eq. (2.6).

Assumption (3): The set

£ =closure of {x|x=», for some channel o} (2.13)

has Lebesgue measure zero.

Assumption (T} is automatically satisfied if there are
only a finite number of possible bound states for each
cluster of particles and, therefore, only a finite number
of channels, This is thought to be commonly the case
in nuclear physics where the interactions have short
range. It is also true if the set of x,’s has accumulation
points which are either finite in number or themselves
have a finite number of accumulation points. This is the
case, for example, for interactions described by dila-
tion analytic pair potentials such as the Coulomb
potential. Although it seems reasonable to believe that
all quantum mechanical problems of interest would
satisfy Assumption (2), we know of no general proof
of that fact. What is known about the problem has been
recently reviewed by Hunziker® and by Simon.?!

The main mathematical result is the following.

Theorem 1: If Assumption (3) is satisfied, then

se—l(ijan*(e) =0, (2.14)
where
L*(G)Ee.}:dl exp(—el)W(x1), (2.15)
Pyoof: For all & =1 &, in // the vector L*(e)b can be
written as
L*e)d :%‘:L;A(e) bys (2.16)

where the cluster matrix elements’ L%, are given by

L;A(g)zg: dl exp(—el)W ,, (1), (2.17)

:ej:dt exp(—el) expls iH ()P, P, = 0,, P,)
xexp(s i ). (2.18)

Since there are only a finite number of clusterings and
hence only a finite number of operators L% (), it

1812 J. Math. Phys., Vol. 18, No. 7, July 1878

suffices to prove

s-1imLj, () =0. (2.19)
£-0%

Because L3, (e) is uniformly bounded, 1L, ())l <1, it
suffices to prove Eq. (2.19) on a dense subset of

/’/A. Such a subset is provided by vectors ¢, of the form
o, =2 ¢, with only a finite number of ¢, different
from zero. The linearity of L%, (€) then implies that it
is suificient to consider ¢, with only one nonzero ¢,.
Since L%, ()=0, we are thus led to prove that

se-}gpngA(e)gba:O (B A4), (2.20)
where

L4, ()0, =¢ [ diexp(- iet) exple iH, )P,

Xexp (Fil D¢, (B#4), (2.21)

Define now the operators [cf. Eq. (2.5)]

. A

Kp=Hy = 2oy (2.22)
and

Fg=Hy~H}, (2.23)

where I, is the identity on// . By taking note of the
commutation properties of these operators, one can
write

expls tH t) Py exp(FiH , Db, = exp(x K 1)Py
xexp(x (Fgtlo,. (2.24)
The operator F, is seli-adjoint with only absolutely

continuous spectrum, Denote its spectral family by
F,4(x). Then Eq. (2.21) may be written in the form

L;, ), :ej: dl exp(—el) explx iK1

xJ%exp(:tiA/)dFB(/\)cb&. (2.25)
Interchange of the order of integration is justified by
Lemma 2 of Ref. 6, with U(/,) and B(/) of that lemma
being identified with ¢ exp(- e/ +ix{) and exp(z (Kz¢) £y,
respectively, The result after evaluating the Bochner
integral is

L (o, =+ zejx[x tie+ Ky PdFy (Mo, (2.26)

We must prove that for every 8:- 0 there exists an

€y° 0 such that L%, ()Pl <& for ¢ <eq.

0
First choose a and b such that
HLE (O ~ Fg(D) + Fpla)jd 11 < (5/3)

for all > 0. This can be done since L}, (¢) is uniformly
bounded, and since

{2.27

s-limFy(x} =1, and s-limF,(x)=0. (2.28)
A -

A= =0

Next, consider the set S[a,b}=S " [a,b], where

S=closure of {x|xv=»x, -, for some g with
clustering B}, (2.29)

Since, by Assumption (£), the set § has Lebesgue mea-
sure zero, the set Sla,b] is compact and has measure
zero, It is therefore possible to cover S{a,d] by a finite
collection N=U7_ (a;,, $;) of disjoint open intervals such
that
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d=inf{|x -y|:xe S[a,b] and y < [a,b] - N} (2.30)
is greater than zero and such that
I Fg(N N [a, Do, Il < (8/3). (2.31)

This last requirement is possible because of the
absolute continuity (with respect to Lebesgue measure)
of Fp. Since [|L,(e)ll <1, one has

| L3, ) F,(N " [a, b]) dall<(8/3). (2.32)
It remains to show that
L3, €)F (N0 Il < (6/3) (2.33)

for all e<e,, where ¢, is some positive number and
N'=[a,b] =N N[a,b].

The set N’ consists of a finite number of disjoint
closed intervals [x,, y,]. Thus

L, ) F, (N, :Zi;LgA(e)FB([xi, v; Do, (2.34)

=Deie) [ In 2 ie + Kyl PodFy (V).
; X (2.35)
The spectral integrals in Eq. (2.35) can be converted

to Bochner integrals by an integration by parts, ?%+2*
The result is

[Tintie+ K[ PpdF 5V,

%
=[y tie +K P F,(y )0,
- [x,zie + K[ Py Fglx )0,
+ j:idx[x tie + KPP, Fy(M\)o,.

1

On the set N’ the operators [ +4e + K,|™*P, have bounds
given by

NAzie+ K ]*Pll<d™ (k=1,2).

(2.36)

(2.37)

The right side of Eq. (2.36) is therefore uniformly
bounded in ¢, and

[ [74n 2 de + K] P pdF g(\ ¢, |l < d72(2d + v, - x| %H(- )
*3 2.38

Combining this result with Eq. (2.35) yields
(1LY, ©F (NIl sezi:d“z(2d+yi —x Mgl

It is now clear that ¢, can be chosen so that Eq. (2.33)
is true for all € <e,.

Combining Eqs. (2.27), (2.31), and (2. 33) finishes
the proof of the theorem, QED

(2.39)

To gain a certain perspective on Theorem 1, it is
useful to rewrite it once more in terms of the channel
and cluster matrix elements.”

Covrollary: For all channels 8 and o

s-lime fo‘dt exp(- et) W2, (1) =0, (2.40)
e~0t*

where Wi _(t) is defined by Eq. (1.1). I Assumption (Z)
is satisfied, then

s-lim L%, ()=0,

e-0"

where L%, (e) is defined by Eq. (2.18).

(2.41)

The proof is immediate from Eq. (2. 14) upon taking
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channel or cluster matrix elements. Assumption (%) is
not needed for Eq. (2.40) since its sole purpose was to
enable us to handle an infinite number of channels
simultaneously.

3. RAMIFICATIONS
A. The Lippmann identity

An alternative form of Theorem 1 is interesting in
that it provides a generalization of the so-called Lipp-
mann identity. ®°

Theovem 2: If Assumption () is satisfied, then

se—lgn (®ie) | (\=H=ie) () -DdEN) =0,  (3.1)
and
s-lim (iz'e)j'th(x)(J*J—1)(>\—Hiz'e)'1:0. (3.2)
Pyoof: Substitute the spectral resolutions
exp(ith):j;exp(i ixf)dE(A), (3.3)

for the left- or right-hand exponentials of Eq. (2.15).
Apply Lemma 2 of Ref. 6 to justify the interchange of
Bochner and spectral integrations. Equations (3.1) and
(3.2) result immediately from evaluation of the

Bochner integrals, QED

Covollary: Let E, (1) be the spectral family asso-
ciated with the cluster Hamiltonian H,, If Assumption
(T) is satisfied, then

s-lim (¥4¢) | (\ = Hp Fie) Py P, dE,(\)=0,,P,,

gt
(3.4)
and
s-lim (xi€) | dE;(WPRP,(\~H, xie)" =8, ,P,.
(3.5)

Proof. The proof is immediate upon taking cluster
matrix elements of Eqs. (3.1) and (3.2). QED

Note that just as with Eq. (2.41) the cluster labels
A and B in Egs. (3.4) and (3.5) can be replaced with
channel labels o and 8. If this is done, Assumption (%)
can be dropped since its sole function was to allow us
to handle a possibly infinite number of channels
simultaneously,

We also remark that the Lippmann identity is usually
expressed®? in the form

s-lim (Fie) (A —Hp Fie) " [0, 0)) =6, |6, (1),

e-0*

(3.6)

where |¢_ (1)) is an improper eigenfunction of H, with
improper eigenvalue A, The spectral integrals in Egs.
(3.4) and (3.5) reflect, we believe, the proper mathe-
matical way to deal with these improper eigenfunctions.
Another difference between Eq. (3.6) and Eq. (3.4) is
the lack of the projection operator Py in Eq. (3.6). This
is the reason why Eq. (3. 6) is valid only when A has two
fragments. '* On the other hand, Egs. (3.4) and (3.5)
are valid for all clusterings A and B.
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B. On-shell equivalence of 7'*' and T

For scattering with short-range interactions we have
previously discussed’ the question of whether the sym-
metric transition operator of the type of Alt, Grass-
berger, and Sandhas and the nonsymmetric operators of
the type used by Lovelace correspond to the same
scattering amplitude. This question has been answered
previously in the affirmative, '"~!7 but with less rigor
than is presented here.

The symmetric operator T{z) is defined on the domain
of H by

T(z)=(z =H{J*(2 =H,) " - (z -H)"'Hz -H), (3.7)

where z is understood to be in the resolvent set of H,
the full N-body Hamiltonian, The connection between
T(z) and the scattering operator S is given by the
formulas®

$ - I=w-lim(-2rd) [, | dE()B(\ - 1)

€~0"

XT{A+ 1 +ie]/2)dE(u), (3.8)
=w-lim s-lim(=2rd) | [ dE(u)o, (- 1)

€1=0"  ey-0* H

X T(n + ie,)dE(N), (3.9)

=s-lim w-lim(=21d) || [ dEQ)T(\ +1e)8, (= w)AE(L).

€+ 0% €,-0%

v (3.10)
In Egs. (3.8)—(3.10) the function §, (x) is defined by

8, (x)=(e/m){e? + x¥)™. The spectral integrals are repeated
(not double) integrals. The ones in Eq. (3.8) may be
done in either order, while in the other equations the

4 integration must be done first,

The nonsymmetric operators are defined by

TUNz2)= (2 - HY{J*(2 = H)™J - (z = H)'J*JHz - H), (3.11)

T (2)= (2 - ){J*(z = Hy)™YJ =J*J (2 - H)' Hz - H). (3.12)

The question is, then, whether T%(z) can be substi-
tuted for T{(z) in Eqs. (3.8)—(3.10).

To establish that 7*’ can replace T in Egs. (3.8)--
(3.10), it is sufficient to prove that if the differences

A (2)=T(2) - T )= J*J - Dz - H) (3.13)
and

A (z)=T(2) =T z)=(z - H)J*J - 1) (3.14)

are substituted into the spectral integrals of those
equations and the various ¢ limits taken, the resulting
limits should be zero. This is straightforward” when
Eq. (3.13) is used in Eq. (3.9) and when Eq. (3.14) is
used in Eq. (3.10).

To go farther, one must substitute the differences in
Egs. (3.13) and (3.14) into Egs. (3.8)—(3.10), and
express the resulting integrals in terms of integrals of
the resolvent operators. These resolvent operators are
expressed, in turn, as Bochner integrals involving the
exponentials exp(+¢H!). The order of Bochner and
spectral integration is reversed, resulting in the follow-
ing equations:
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(=200)f, | AEQO (x = )AX([x + 1+ de]/2)dE ()

=L%): (3.15)
(=2m0) ), | dE(S, (x = 1A +ie,) dEQN)

= (e, + L* e} + (e7%, — 1)L 7(e,); (3.16)
(=2mi) ), J AE(S, (v = AT+ e )dE(p)

= (7%, + DL (e,) + (7%, — 1)L*Ge,). (3.17)

The operators L*() are defined in Eq. (2,15).

It is apparent from Assumption (W4) of Ref, 6, which
for multichannel systems of the type discussed here
was verified in the appendix of that paper, that

w-limL*e) =0.

e-0*

(3.18)

The assertion of Theorem 1 is that the weak limit can
se replaced by a strong limit if Assumption (2) is true.

When combined with the preceding analysis, the
remark of the previous paragraph yields a rigorous
proof of the following theorem,

Theorem 3: Equations (3, 8) and (3,8) are true with
the operator T replaced by T*, Equation (3.10) is
true with the operator T replaced by 7", In addition,
it Assumption () is true, then Eq. (8.10) is true with
T replaced by T,

This theorem establishes, for all practical purposes,
the rigorous equivalence of the operators T(z) and
T (z) to the extent that they yield the same scattering
operator for particles with short-range interactions.

C. On replacing weak limits by strong limits

The reason for the presence of weak limits in
Egs. (3.8)--(3.10) is that the weak limit in Eq. (2.11)
cannot be replaced by the strong limit, Theorem 1
raises a new possibility, however, which is based on
the following theorem.

Theovem 4: If Agsumption (I) is true, then

@ = s-lime | “dt exp(-et)Q* (¢ £)E},,

e-0*

(3.19)

where Q*(t) is the adjoint of Q(¢) defined in Eq. (2.9) and
where E,* is defined in Eq. (2.10).

Proof: Starting with Eq. (2. 8), it is an easy matter
to prove that

0= s-limejouc dt exp(—el)*(z {2z ) - Q%

€-0%

(3.20)

Combining Eq. (3.20) with Theorem 1 and Eq. (2.10)
yields Eq. (3.19) QED

Since the time independent formulas for the scatter-
ing operator S involve only Abel limits and not the direct
time limits, the appearance of 2** as a strong Abel
limit reopens the question of whether the weak limits
in Egs. (3.8)—(3.10) can be replaced by strong
limits.

In this direction we can prove the following.

Theovem 5: If Assumption (2) is true, and if S is
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unitary, then the weak limits in Egs. (3.8) and (3.9) can
be replaced by strong limits.

Pyoof: From Eq. (2.8) it is apparent that
s-limefowdt exp(—et X ()Q(=-1) - 1}

€ 0%

:s—limfom dt exp(— et {Q* (1) ~ I}, {(3.21)

e~0"
Using Eq. (3.19) and the well-known fact that £}, =E3,
is necessary and sufficient for § to be unitary, one can
rewrite the right side of Eq. (3.21). The result is

S—I=Q"*Q" -1

= s-lime | " dtexp(-eD{@* (A= -1} (3.22)

€-0*
The procedure used in the proof of Theorem 4 of Ref.
6 now proves the theorem for Eq. (3.8). To prove the
result for Eq. (3.9), one follows the proof of Theorem
5 of Ref. 6. Equation (3.53) of Ref. 6, can, however,
now be replaced by
S-I= s-limej;° dt exp{- ef)

€ -0%
x[exp(+ iHE) J* Q- exp(~ iHt)

- exp(~ iHi)J*Q exp(iHt)]. (3.23)

Equation (3.23) follows from the fact that E}, =Ej,
Theorem 4, and from the intertwining property. The
procedure used to prove Theorem 5 of Ref. 6 now yields
the desired result for Eq. (3.9). QED

The assumptions of Theorem 5 are not sufficient to
allow one to prove that the weak limit in Eq. (3.10) can
be replaced by a strong limit. To that end, we can
offer the following result,

Theorem 6: Suppose that
0= S-limef;dt exp(~e)2* (1)1, - E}),
0#

€~

(3.24)

where I, is the identity on #/,, and that Assumption ()
is true, Then, the weak limits can be replaced by
strong limits in Eqs, (3.8)—(3.10).

Pyoof: If Eq. (3.24) is true, then Eq. (3.19) is true
with E}, replaced by I,. The proof of Theorem 5 of
Ref. 6 then is true with all limits being strong limits.
QED

Equation (3. 24) is especially interesting in that it
is a necessary, but doubtless not sufficient, condition
for " to be asymptotically complete in the sense of
Kato.® Assuming that #,, has no singularly continuous
spectrum, and assuming that Q" is asymptotically com-
plete so that P, =E7}, then I, - E; is the orthogonal
projection of //, onto the subspace spanned by the
eigenvectors of H,. In this case Eq. (3.24) then
follows from the fact that # has only absolutely contin-
uous spectrum, and hence ¢(e +¢x — H)™* has strong
limit zero as ¢ ~ 0, uniformly in x,

A proof of Eq. (3.24) from first principles is there-
fore of great intrinsic interest as a possible first step
in a proof of asymptotic completeness.

Note also that although in Theorem 6 no assumptions
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about 2~ are made, the weak limits in Egs. (3.8)~
(3.10) can be replaced by strong limits, In particular
one can imagine that £} # E}, and, hence, that $ is not
unitary. It follows that the replacement of weak limits
in Egs. (3.8), (3.9) with strong limits is not as directly
tied to the unitarity of S, as Theorem 5 might suggest,

In summary, Theorem 4 does not imply that the weak
limits in Egs, (3.8)—(3.10) can be replaced by strong
limits. There seems to be some, albeit indirect, con-
nection between replacing the weak by strong limits and
the unitarity of the scattering operator S. The objec-
tions raised in Ref. 6 to unitarity proofs based on dif-
ferences T(x +:0) -~ T*(\ +{0), evaluated as strong
limits, therefore still stand unanswered.

D. The Obermann-~Wollenberg theory

The fact that the weak limit in Eq. (2.11) cannot
be replaced by a strong limit means that Kato’s two
Hilbert space theorem (Theorem 6. 3 of Ref. 24) on
asymptotic completeness is not valid in the multi-~
channel case in general (see, however, Ref. 4 for a
related result in a more limited context). Obermann
and Wollenberg,'® within the context of two-particle
scattering, have, however, developed a similar theory
that involves only a restricted sort of Abel limit. In
their theory one might hope to replace Eq. (2.11) by
the stronger condition that

lime | * dtexp(~et)l| % ( DEL$ - @+ =0,

g-0"

(3.25)

The assumptions of Theorem 6.3 of Ref. 24 are suffi-
cient to guarantee Eq. (3.25) with E% replaced by P,.
In the two-particle theory of Obermann and Wollenberg
the validity of Eq. (3.25), with Ef replaced by P,, is
necessary and sufficient for the wave operators to be
complete (Theorem 3 of Ref. 19).

Alas, that aspect of the approach of Obermann and
Wollenberg does not generalize to multichannel scatter-
ing, as the following theorem shows.

Theovem T: Let EJ be the orthogonal projections of
#{; onto the ranges of the cluster wave operators
Qi =s-limexp(iH t) exp(-iH, )P, .
tedw
Then, Eq. (3.25) is not true for y€ E%4/xC Pyl y,
A0,

(3.26)

Proof: A necessary and sufficient condition for Eq.
(3.25) to be true is that

ozemg;ej‘:dz exp(~et)(¥, [Ex Q= HQ*(2 )EL — E4 ). (3.27)
Substitute £LE% = E3 and JJ* =1, + 5Py, where 5’

means sum over B#0, into Eq, (3.27). The result,
for y=E%y, is

e[t exp(~el)(y,[E4 Qs Q*(1)E} ~ ESNY)
:goej:dt exp(— el Py exp(* iH ¢ )E4 i

>e| diexp(-e)lIP, exp(x iHl HEL Y, (3.28)
Using the method of Kato (Theorem X. 3.3 of Ref. 25)
we prove that

S-lim exp(iH ,t) exp(~ iHyt)E} = Q3% (3.29)

- 2%
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From this it is simple to see that, as € — 0", the right
side of Eq. (3.28) approaches

iz = ILEL I =1l ¢ 112,

Thus, when the limit is taken in Eq. (3,25), the limit,
if it exists, is greater than || ¢1|%, and, hence, cannot
be zero, QED

(3.30)

Corollary: If the limits exist,

s-lime | "dt exp(- el P[0 00 (£1) - 1,]P #0.(3.31)

This corollary is stated because of the parallel struc-
ture of the integral in Eq. (3.31) and that of Eq. (2.15).
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An investigation of some of the kinematical aspects of

plane symmetric space-times?®
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A short review of the literature on plane symmetric space~times (PSSTS) is given in the Introduction.

The rest of the paper concerns itself with an investigation of some of the kinematical aspects of PSSTS,
i.e., properties of PSSTS which do not depend on the field equations. In particular, the existence of four

special coordinate systems is considered. It is shown that the existence of these coordinate systems is not
guaranteed for a general C L k < 1) plane symmetric metric (PSM). For k =2, two of the coordinate
systems exist in a weak sense whereas the existence of the other two is not guaranteed in any sense. A
local intrinsic type classification is introduced in Sec. 3, and it is shown that the existence of an extra
Killing vector is correlated 10 the classification. Finally, the local equivalence of two given PSSTS is

considered in Sec. 4. It is shown that some algebraic equations arise from the analysis. These algebraic
equations may lead directly to the solution of the problem of the local equivalence of two given PSSTS.

INTRODUCTION

PSSTS were defined by Taub.! Taub found a static
solution (g,) to R, =0. Davis and Ray® have shown that
there is a homogeneous solution (g,) to R,, =0 and
pointed out that there is apparently no natural way to
join g, and g,, thus obtaining a solution in an extended
manifold. Novotny® has pointed out that g, and g, are the
only known solutions to R, =0 with plane symmetry and
have given as generalization of g, and g,, solutions to
R, -3¢, R+Ag,, =0 with plane symmetry. Bonnor*
has shown that a Robinson—Trautman metric, which
contains a singular hypersurface p=0, may be trans-
formed to g, in the region p < 0 and may be transformed
to g, in the region p > 0.

Horsk§® has given a physical interpretation of g, as
the field of a plane shell and has solved the dynamical
problem of collapsing plane shells of dust. Horskﬂz
and Novotn§y® matched g, to the interior of a homogeneous
thick plane disk and later, Horsky and Horsk& matched
g, tothe interior of an inhomogeneous thick plate. Davis
and Ray” showed that g, could be interpreted physically
as a field of ghost neutrinos and later that g, could also
be interpreted as a field of ghost neutrinos.? Davis and
Ray® found the general form of the metric for plane
symmetric neutrino fields when T, # 0. Plane symmetric
self-gravitating fluids with pressure equal to the energy
density were studied by Tabensky and Taub. *° Static
plane symmetric zero-rest mass scalar field were
analyzed by Singh,'’ and Sistero'? analyzed some non
static plane symmetric zero-rest mass scalar fields.

A large class of solutions of the exterior Einstein—
Maxwell equations with plane symmetry was found by
Letelier and Tabensky.'® Banerjee and Chakrabarty™
corrected an error of sign in the Letelier and Tabensky
article and studied some plane symmetric charged dust
distributions. Humi and LeBritton'® found some interior
solutions to the plane symmetric Einstein—Maxwell
equations. Tiwari and Nayak'® found plane symmetric

¥An abstract of this paper (called Review of Plane Symmetric
Space—Times) was contributed (by first named author) to the
Eighth International Conference on General Relativity and
Gravitation, University of Waterloo, 1977,
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vacuum solutions of the Brans—Dicke field equations
and later,’” plane symmetric interior solutions of the
Brans—Dicke field equations. Pandy and Sharmal!® have
studied PSSTS from the point of view of imbedding class,

No claim of completeness is intended for the above
summary of the literature on PSSTS, but clearly,
quite extensive work has been done on plane symmetry,
However, we feel that this symmetry is still not under-
stood as well as the more popular spherical and
cylindrical symmetries. The following work deals with
some aspects of PSSTS which are independent of the
field equations and hence is a study of the kinematics
of PSSTS.

Taub’s! definition of PSSTS is given in Sec. 1. It is
pointed out that the plane symmetry of a space—time
may not obtain globally.

Section 2 is a discussion of admissible transforma-
tions. Four different coordinate systems are analyzed.
The idea is to start with a general PSM and look for
admissible transformations which simplify the form of
the metric.

In Sec. 3 we introduce an intrinsic local type classifi-
cation for PSSTS. Under this classification a plane
symmetric space—time (PSST) is locally one of three
possible types. It is shown that under certain conditions
there is a one-to-one correlation between an extra
Killing vector and the local type.

Section 4 concludes this discussion with an analysis
of the problem of the local equivalence of two given
PSSTS, It is shown that the transformation equations
can be reduced to algebraic equations. If the algebraic
equations are not satisfied identically, they may yield
the desired transformation, or imply that the transfor-
mation does not exist.

1. PLANE SYMMETRIC SPACE-TIMES
Taub! defined PSSTS as space—times which admit the
three-parameter group of transformations

¥'=cos(8)x! +sin(8)x% +a, (1.1a)
7=~ sin(@)x* +cos(B? + b, (1.1b)
F:,Yg, .\—’4:.\’4, ’1 IC)
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as a three-parameter group of isometries. The
infinitesimal generators of this group of transforma-
tions are

kg =01, k=03, (1.2a)
(1.2b)

Killing’s equations imply that with respect to the above
coordinate system the metric must have the form

3

-3 1) 154
©)=x"0y —x705.

(1.3)

where 4, B, C, and D are suitably smooth [say c* (£ >0)]
functions of v* and x* only. In order that (1.3) be a
space—time metric, 4, B, C, and D must satisfy the
Lorentz signature requirements

ds?= Aldx" + dx®) + Bdx® + 2Cdx*dx* + Ddx**

A>05 (1-43-)
B+D+[(B-D)+4C?]*/2> 0, (1.4b)
B+D~[(B-Dy+4C?)'/2<0. {1.4c)

Note that the inequalities (1.4) imply that det(g,,)
—A%(BD - C?)< 0,

Equivalently, a PSST is a space~time which admits
maximally symmetric two-dimensional subspaces whose
metric has positive eigenvalues and zero curvature.*®

Unless one specifies that the transformations given by
Egs. (1.1) are isometries for all x® and x*, the plane
symmetry of a space—time may not obtain globally.
For example, consider the metric
ds? :A(dx12 +dx?y + Bdx¥ + 2Cdx3dx* +Ddx42

+h(x*,, (x)dxtdy’ (1.5)

where 4, B, C, and D are as before, h(x®) is the “test
function” defined by

h(x®) = exp[ - 1/(1 = x*)], |x*| < 1; hx®) =0, [¢*]=1

’

(1.6)

and where the %, (x) are suitably smooth functions of the
x* chosen so as to give (1.5) the correct signature in
the region |x*|< 1, This metric is plane symmetric for
{x%1> 1 but not necessarily so for ix*|<1, We shall
consider space—times which are globally plane sym-
metric. In this case the transformations given by Eqgs.
(1,1) are isometries for all x* and x*.

2. ADMISSIBLE TRANSFORMATIONS

A PSM ds®*=g,,dx*dx” can by means of a coordinate
transformation be reduced to the form given by Eq.
(1.3), A coordinate system such as this is said to be
natural for plane symmetry. An admissible transforma-
tion? of a PSST is a transformation which leaves the
form of the generators given by Eqs. (1.2) invariant.

In order to deduce the general form for the admissible
transformations of a PSST, consider the general
transformation

¥ =FH (w2, %) X0,

b

(2.1)

The transformation given by Egs. (2.1) is an admissible
transformation for PSSTS if

oF
axt

b

’ (Z.Za)

6'1’:611_6__{”;

Yo O5=0%
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aF

F25Y4 — F'8% = (x%% —x'6%) e

(2.2b)

From these equations it follows that
1’ x12:x2, (2'33)
(2. 3b)

is the general form for the admissible transformations
of a PSST.

Suppose that the functions F and G are of class C*™%,

In general, Eqs. (2.3) need not have an inverse which
is of class C**! The inverse function theorem tells us
that in regions where the Jacobian

oF BF
53 A d
X o aF 3G oF 3G
I= =37 av A a0 O (2.4)
G @G T T
Eqgs. (2.3) are locally invertible and the inverse
functions
,\’3 :f(,\"?, -\"4), (\A :g(x’3, xni) (2_ 5)

will also be of class C**', When this is the case, Eqs.

(2. 3) define a local admissible coordinate transforma-
tion for PSSTS. Admissible coordinate transformations
transform natural coordinates intc natural coordinates,

One can use invertible admissible transformations to
express the metric in many different forms. This be
becomes a useful exercise when a simplification for the
form given by Eq. (1. 3) is achieved. We shall consider
the following four forms of a PSM: (A) harmonic, (B)
orthogonal, (C) the Taub! form, and (D) Petrov’s®!
form for conformal reducible metrics of type II,

A. Plane symmetric space-times in harmonic coordinates

We shall say that a PSST is naturally harmonic if a
natural coordinate system exists such that

ds? = A7(dx' + dx'?) + Brdx +2C"dx"3d

+Ddx’t, {2.86)

where A’, B/, C’, and D’ are C* (¢ > 0) functions of v’*
and x’? only, satisfy the Lorentz signature requirements
and the harmonic coordinate conditions,*

0=(/=g g'*),,. These conditions may be written out
explicitly as follows:

(A'D’(C’% = B'D'Y1/2), 5 =(A’C"(C" = B'D')"/2), 45
(2.7a)
342
(2. )
where the subscripts 3 and 4 refer to x'* and x"%,
respectively,

Aacrer - B’D’)'l/z),3 = (A’B(C7? = B'D')"1/?)

Now we proceed to show that every C* PSST is locally
equivalent to a C' naturally harmonic PSST,

Given a PSST with metric given by Eq. (1.3) subject
to the inequalities (1.4), the four independent solutions

(when they exist) of the equation
gqu,uV:ZL,UI"V, (2'8)
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where
F”=%g"”gyk{gku,p+gkp,u —gw,k}. (2.9)
and
w"=|1/A 0 0 0
0 1/A 0 0
0 0 D/(BD - C? -C/(BD-C?
0 0 -C/(BD-C? B/(BD-C?
{2.10)

define a local system of harmonic coordinates.?? We
want to look for solutions of Eq, (2. 8) in the form of
Egs. (2.3). Note first of all that y=x* (or x?) is a
solution of Eq. (2.8) if I'* {(or I'?) vanishes identically,
Inspection of Eqs. (2.9) and (2.10) show that I'* and I'?
vanish identically, and therefore x’* =x' and x** =x®
are two independent solutions of Eq. (2.8).

We now look for solutions of the form ¥(x3, x*).
Equation (2. 8) becomes

Dy, g5 = 2CY 5+ By 4= (BD - C*)[p ,T° +9, T, (2.11)

If B (or D) is not equal to zero, Eq. (2,11) may be
divided by B (or D) yielding a form of Eq. (2.11)
suitable for the Cauchy—Kowalewski theorem. However,
the conditions of this theorem (analyticity) are too
restrictive to be generally applicable to general
relativity, Hawking and Ellis®® point out that a C*"
metric guarantees the existence of unique geodesics.
They give examples where a C'~ metric is used to
describe gravitational shock waves (Choquet-Bruhat
and Penrose), thin mass shells (Israel), and solutions
containing pressure free matter where the geodesic
flow lines have two- or three-dimensional caustics
(Papepetrou and Hamoui). Synge®* claims that the
metric should be C* across 3-surfaces of discontinuity
and C° everywhere else. If the g, are C*, det(g,,) is
C*. Since det(g,,)# 0 the g** will also be C*.

Now rewrite Eq. {2.11) as follows:
D,y =Cd,g) s+ (=C 3+ By ), +Pb,+Qp,=0,
(2.12a)
P=C , -D,~-(BD-C)I* Q=C,-B,, ~(BD-CI*.
(2.12b)

If A, B,C, and D are C*, P and @ will be C* and we

are guaranteed the existence of a unique (corresponding
to suitable initial data) local weak (C?) solution of the
hyperbolic (i.e., BD — C*<0) second order linear
partial differential equation (2.12a) for the function
of the two independent variables x* and x*, If 4, B, C,
and D are C3, P and @ will be C? and this guarantees
the existence of a unique (corresponding to suitable
initial data) local C? solution in the usual sense.?

Suppose 4, B, C and D are C®, 1t is possible to find
two solutions, say F(x°, x*) and G(x*, x*) of Eq. (2.12a)
in a neighborhood of an initial noncharacteristic curve
a(s), s e[0,s,], if the initial data are chosen as follows
[Haak and Wendland (25)];

F/ o= F(s), [(DF ,~CF )X'+(CF ,~ BF )X°)/
= V(s),

afs)

(2.132)
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G/a(s) = G(s\ * [(DG,S - CG,4)X4 + (CG& - BG,4)X3]/

/ ais)
=W(s), (2.13b)

als), Fs), Gls)e C[0,s,]), Vis), Wis)e CY{[0,s,),
(2.13¢)

where a “dot” means differentiation with respect to the
parameter s. From Eqs. (2.13) it follows that

J/a(s) = (F,BG,4 —.F'4G'3),/a(s) 5‘7(3)
= (VG- WR/(BX' +20X°x* + DX¥).  (2.14)
The quantity BX®® + 2CX3X*+ DX**+ 0 for a noncharac-
teristic curve and the initial data may be chosen so that
VG - WF+0, This shows that the initial data may be
chosen so that J{s)#0, It then follows [in the same

way as the solution to Eq. (2.12a) was constructed]
that J#0 in a neighborhood of a(s).

B. Plane symmetric space-times in orthogonal
cordinates

We shall say that a PSST is naturally orthogonal if a
natural coordinate system exists such that

ds® = A(dx?” +dx?®) + Bdx® + Ddx*?®, (2.15)
where A, B, and D are C* (£ > 0) functions of x° and x*

only and satisfy the signature requirements (1, 4) with
Cc=0.

Now we proceed to show that a C* naturally harmonic
PSST is locally equivalent to a C* naturally orthogonal
PSST,

Consider the naturally harmonic PSST defined by
Egs. (2.6) and (2.7). Consider also the change of
basis

(2.16a)
(2.16b)

wl =dxll, wzzdxfz’ 'I/U3 =dx'3,

wr=n(C'dx"®+ D'dx"*),
where 7 is a function of x’* and x’*, With respect to this
new basis, the metric takes the form

g=A"w +w?) + (B' - C?/D"w* + (1 /n*D"w?,

(2.17)
in the regions where D’#0, (We use the letter g to
denote the metric with respect to a noncoordinate

basis.) Now we require that the new basis be a coor-
dinate basis; i.e., that

H=xt xt=x xP=x", (2.18a)

=63, x"), wi=dx", (2,18b)
Equations (2.16b) and (2,18b) lead to

ncr;%, npfzgi—?;, (2.19a)

m(nc’)zfg(w’)a (2.19b)

Equation (2,19b) is the integrability condition for Egs.
{(2.19a) and ensures that #* =dx? will be an exact
differential. The C* solution of Eq. (2.19b) [via Eq.
(2.7a)] is n=A’/(C"? = B'D’)'/2_ G is obtainable from
Eqgs. {2.19a) by integration and therefore G is also C*,
The Jacobian of the transformation given by Eqs. (2.18)
is J=nD’+#0 in the regions where D’#0, Apart from
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the possibility D’ =0, the new basis is a coordinate
basis and the metric is given by

o]

(2.20)

g=dsg, =A@ + ax®) + (

The primes have been removed, indicating that 4’, B,
C’, and D' have been evaluated in terms of x% and x*.
The subscript R, indicates that the metric is defined
in the regions R, for which D’#0,

We may also transform (locally) the naturally
harmonic PSM to a naturally orthogonal PSM via the

change of basis
w! =dx'?, (2.21a)

(2.21p)

w?=dx'?, w*=dx'?,

w3 =n(B'dx"? + C'dx"™),

With respect to the new basis the metric takes the form

R 2
g:A’(w12 +0?’) + (172113') w¥ + <D' - %)%42, (2.22)

in the regions where B’# 0, The requirement that the
new basis be a coordinate basis is satisfied with the
choice n=A"/(C"? - B'D'}*/2,

The Jocobian of the transformation given by Eqs.
(2.21) is J=7mB’# 0 in the regions where B’# 0, Apart
from the possibility B’ =0, the new basis is a coordinate
basis and the metric is given by
d¥?’) + (C2B~ - D) A2qx

-dx¥).
(2.23)

The “bars” indicate that A’, B’, C’, and D’ have been
evaluated in terms of ¥* and x* and the subscript R,
indicates that the metric is defined in the regions R,
for which B’#0,

g=ds} =Adw* +

Since we have an explicit form for the local transfor-
mation of a naturally harmonic PSST to a naturally
orthogonal PSST we may discuss some of the global
properties of this transformation. If D’ (or B') is
definite (strictly greater than or less than zero), the
transformation, Egs. (2.18) [or Egs. (2.21)] from a
naturally harmonic PSST to a naturally orthogonal PSST
is global. On the other hand, we have to admit the
possibility that the hypersurfaces D’=0 and B’ =0
exist for some naturally harmonic PSSTS. If this is
the case, then either I’ =0 and B’ =0 have an empty
1ntersect1on or they do not.

Let us first of all consider the case where (D’ =0)

N (B'=0)=@. In this case consider a covering of the
naturally harmonic PSST with four coordinate patches:
R for which D’ >0, R, for which D' <0, R for which
B’ >0, and R, for Whlch B’<0, In order to visualize
this situation, lets consider the x’*, x’* plane in which
D'=0 and B’ =0 appear as curves. For simplicity, we
shall represent these curves by parallel straight lines.
[See Fig. 1.]

The region R, contains B’=0, and the region E con-
tains D’ =0, The naturally harmomc PSST may be
mapped to the naturally orthogonal PSST which is
covered by the four coordinate patches Rl, R,, R,,
and K, and for which the metric is given by
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FIG, 1. The region B is Ry 1Ry, 4 is the region R,/ R, and
the region C is R,(V R, By their definition, the regions 4, B,
C do not contain the curves D’ =0 and B’=0. These are the
overlap regions for the covering R{JR U R2U5_2.

dsi =A(dx"” +dx*®) + (C2D™' - B) [Adx*® - dx™"],
1

(2.24a)
dsh =A(dx* +dx®) + (B ~ C*D™)[dx™ - 47ax¥),

(2.24b)
dsg =AWR +dr*") + (C2B™ ~ DYA?ax®’ —ax’], (2.24c)
dsh =AWP +d7) + (D - CBHax® - A7) (2.240)

in the respective patches In the overlap reglon A,

dsk is related to ds'g via the relations v'= \‘ xE=x2 x?
=x", x —G(x’3 "), B =F@?, x"), x =x" One can ex-
press % and x’* in terms of x% and «* and then and

¥* may be expressed in terms of x° and x*. The metrics
ds,%2 and ds% are similarly related in the overlap regions
B as are dsR1 and dsi in the overlap region C. Therefore
if (D’=0)N (B’ =0)=40, the naturally harmonic PSST is
globally equivalent to the rather complex naturally
orthogonal PSST (2.24).

In the case where (D' =0) N (B’ =0)# @, the situation

is more complicated. Consider, once again, the x’3
" plane and a neighborhood U of one of the intersection

points. For simplicity, we represent the curves D' =0
and B’ =0 by intersecting line segments in U as shown
in Fig. 2. Note that the point P where D'=0 and B’ =0
intersect is not in the orthogonal PSST constructed
above. However, the point P is well defined in the
naturally harmonic PSST.

We end this section with the following remark. A
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FIG, 2, The overlap regions for the covering F,UR UR,JR?UP
of the naturally harmonic plane symmetric_space—time are
A=R,(R;, B=R,;NRy, C=R,NRy, aud D=R,NR,.

general C® PSST is locally equivalent to a C' naturally
orthogonal PSST via its local equivalence to a C?
naturally harmonic PSST,

C. The Taub form of plane symmetric space-times
The Taub! form for a PSM is

ds? = A(dx* +dx®®) + Bdx® — dx**), (2. 25)

where 4 and B are C* (say k= 0) functions of x* and
x* only.

A C! naturally orthogonal PSST is locally equivalent
to a C? Taub PSST. To see this consider the C! naturally
orthogonal PSST given by Eq. (2.18) and make the
change of basis

w' =dx, w?=dx?, (2.26a)
-D 1/2

wazadx3+ (-—B—'> bdx“, (2.26b)
~D\1/2

w* =bdx® + (—-E) adx?. (2.26¢)

With respect to this new basis, the metric takes
the form

g=Aw? +w?) +[B/(@ - b))](w? - w?). (2.27)

The new basis will be a coordinate basis provided

y___a_[(;2>1’2b]
ox? T ax® B ’
22 0(=2)"]
52 x|\ B a)
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(2.28a)

(2.28b)
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Equations (2.28) are in a form suitable for the Cauchy—
Kowalewsky theorem, however we shall manage with
less stringent conditions than the conditions of this
theorem.

Write Eqs. (2.28) as follows:

a, -<‘—}f-) Y - [(152) 1”}31;:0, (2.292)
by~ <-_312>l“/-23 - [(332> 1/2] ,3a' =0, (2.29b)

Since B and D are definite C! functions of x* and x*,
(~D/B)"/? is C! and therefore [(-D/B)!/?],, is C’. Hence,
Egs, (2.29) are a special case of the linear system of
two first order partial differential equations discussed
in Chap. 7 of Ref, 25. It turns out that the system (2.29)
is hyperbolic. Furthermore, the conditions of the
theorem which guarantees the existence of a local,
weak, unique (corresponding to suitable initial data)
solution are satisfied [see Chap. 8 of Ref. (25)].
Therefore, we are guaranteed the existence of local

C? solutions a(x®, x*) and b(x*, x*) of Eqs. (2.29). Since
F and G are obtained by integration of ¢ and b, F and G
will also be C° functions of x* and x*, The Jacobian of
the transformation given by Egs. (2,26) is
=(-D/B)/2(a® - b?). The initial data may be chosen

so that J does not equal zero. The new basis is a coor-
dinate basis and the metric takes the form

g=ds?=A"(dx'? + dx) + (B’ /{a’% - b'?))

X[dx'32 —-d)(mz], (230)

where the primes indicate that A, B, a, and b have been
evaluated in terms of x’* and x**.

D. Plane symmetric space-times in Petrov’s form for
conformal reducible metrics of type Il.

The metric of a PSST is conformal reducible type
1I. Petrov® has found all the solutions to R, =kg,,
for metrics of this type. The coordinate system used
there is

ds*® —_-Hz{elﬁzdx12 +e,dx? + e yidx® + e dx¥h (2.3

where H=H(x!, x?, x%, x1), =4}, x?), and y =y(x,x").
The e, are chosen to give (2.37) the correct signature.
The Petrov form for conformal reducible metrics of
type II with plane symmetry is

ds? = Aldx® +dx? + Bdx™ - dx**}, (2.32)
where A and B are positive definite C* (say %= 0) func-~
tions of x* and x* only. Now we set up the equations
which must be solvable if a naturally orthogonal C!
PSST is locally equivalent to a PSST with metric given
by (2, 32).

Write the naturally orthogonal C* PSM as follows,

ds? = Aldx* +dx?* + Bdx™ + Ddx*} (2.33)
The change of basis

wl=dx', w¥=dx?,

w3=adx3+(:§D—>”2(ab/mdx“, (2.34)

-D 1/2
w? = bdx® + (—B-) VB +b? qu,
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brings the metric to the desired form

g=A [wlz +uw? + <(£;,+2ik—)> w — u!"z} . (2.35)
The new basis is a coordinate basis, provided

da 2 )[/=D\'/? Y

5—\’—4- :W{<—E—> ((Ib/‘/B"‘h"}, (2.363.)

2l & J/-D\'/*®

5(\_33.8_(\_?«—5) \/B+b§}, (2.36b)

Although Eqs. (2.36) are in a form suitable for the
Cauchy—Kowalewski theorem, the quantities involved
are not analytic. We instead put Eqs. (2.36) into a
form used by Courant,?*

all U
EFF-I-JWEF +1V:O, (2'37)
where
- 1/2
o a2
)3
U:[ y —=N= _D>]1/z (2.38)
4 i
B+? [(B 3
_ 1/2 e 1/2
<—BQ) I)/V’B+b2<—BQ> aB/v B+ b?
-M=

- D\/2 < N2 '
0 <—B“> B+ (2.39)

The matrix M has a double real eigenvalue x = - (- D/
BY'/?p/VB +b? for real b. M does not have two linearly
independent left eigenvectors. Courant® has shown that
C! solutions of Eq. (2.44) exist when M and N are C!
functions of U,x?, and x* and when the matrix M has
two real eigenvalues and two linearly independent left
eigenvectors. However, the problem we are considering
violates these conditions.

The problem of determining the conditions under
which a naturally orthogonal PSST is locally equivalent
to a PSST with metric given by (2.38) is essentially
the same as determining the conditions under which
there exist a solution of Eq. (2.37) where U, M, and
N are given by Egs. (2.38) and (2.39) such that
J=a(~-D/BY/2B/VB+b%+0,

3. LOCAL TYPE CLASSIFICATION FOR PLANE
SYMMETRIC SPACE-TIMES

In Sec. 4 we will consider the problem of the local
equivalence of two given PSSTS, The following local
type classification allows one to distinguish three local
types of PSSTS.

Consider the PSM given by Eq. (1.3) along with the
inequalities (1.4). For admissible transformations
[Eqgs. (2.3)] we have

Ar(x’?, x") =A(x®, x1), (3.1a)
2xt x™ .
gi]':gx—’] é?jglm’ Z,]’l:m:3’4- (3'1b)

1622 J. Math Phys., Vol. 19, No. 7, July 1978

Note that 4 is a scalar function with respect to admiss-
ible transformations. Restricting ourselves to admiss-
ible transformations, the quantities

A
YN

3.2)

are the components of a vector and

e b f0ANE L (3AY (A ANzl
i h—{”(&rﬁ) ’2°(5F> (5r>+3<5—> }A ;
(3.3a)

A=BD - C?, (3.3b)

is a scalar, which depending on 4, B, C, and D, may be
greater than, less than, or equal to zero. We

shall say that a PSST is respectively type I, II, III if
V*#V  is greater than, less than, or equal to zero,

This is a local classification as a PSST may be of mixed
type over a large domain.

Most of the PSSTS discussed in the references given
in the Introduction admit an extra Killing vector &
for which £! =0=£%, When this is the case, Killing’s
equations imply that £° and £* are independent of x*
and x* that

A8+ A LE =0, (3.4)
Suppose that A ,#0. In this case

gre, = (E2)4DA%, - 2CA LA , + BA%}/(A%). (3.5)
Comparing Egs. (3.3) and (3.5) we see that

VY, =[(A P/ (AR E, (3.6)

From Eq. (3.6) if a PSST admits an extra Killing
vector £* for which £'=0=¢?, the type is I, II, III if
£“ is respectively timelike, spacelike, null.

4. LOCAL EQUIVALENCE OF TWO PLANE
SYMMETRIC SPACE-TIMES

Suppose that one has the general solution to Einstein’s
field equations with plane symmetry. This solution
generally consists of a class of solutions depending on
some arbitrary functions and constants of integration.
At this point one is faced with the problem of determin-
ing the subclass of solutions which cannot be obtained
from one another by a coordinate transformation. The
general problem of the equivalence of two given
symmetric quadratic forms is discussed in Eisenhart.*
We shall follow the outline of Eisenhart’s discussion.

Let S;(g) be the class of all solutions to Einstein’s
field equations for a PSM g and energy —momentum
tensor 7. Consider S, (g;) and S,(g,) € S{g). g; and g,
will have the general form (1.3). We have shown that
every C® PSM is locally equivalent to a C! naturally
orthogonal PSM. In the following analysis we will
assume that g; and g, are at least C® so that we may
use their local naturally orthogonal form. This involves
a slight loss of generality since the results will not
apply to C? and C! PSMS.

Suppose that we have determined that g, and g, are
locally of the same type. Then

ds? = A(dx'® + dx?*) + Bdx® - Ddx*, (4.1)
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ds?=ANdx""® + dx'?) + B'dx' = D'dx"??, (4.2)

If there is an admissible transformation of the form

r=xt P=x?, (4.3a)
K3 =F(x'?, x'), (4. 3b)
xP=G(x?, x), (4.3c)

such that dsﬁ:dsz, then the space—times are locally
equivalent. That is, if the nonlinear first order

equations:
AE =470, 7, (4.42)
5 virs
F G) <8 ,3) D(F G)(m) =B ( 3 4) (44b)
F G) (8 ,4) ~D(F ((:9_?_,%)2:_1),()('3’ xlq)’ (440)

F\( 2F 3G\ ( 3G
B(F,G)<W><W> -D(F,G)(a—A;,—E;) (ax—4> =0 (4.4d)

have solutions, the two space—times are locally
equivalent.

If we use the notation

oF
a=-="=3 aA 13 8\13
o F s
b:—axmi PA"’ ) 4.5)
_if_‘
8= BF 8\ 3
; 84 . A’
FYe J= 8\"4
and provided g# 0, we can differentiate Eq. (4.4a) and
reduce Egs. (4.4b)—(4.4d) to
(Bh? — g*D)e® - 2iBhe + (Bi® - g¢*B’)=0, (4, 6a)
(BI? = ¢*D)f* - 2jBhf + (Bj* + g?D’) =0, (4.6b)
(BW® - g®D)ef — iBhf — jBhe + Bij=0. (4. 6¢)

Once ¢ and f have been determined as solutions of Eqs.
(4.6), a and b are given by

(4.7a)
(4.7b)

a=(i-he)/g,
b=(j-hf)/g.

Equations (4. 6a,b} are quadratic equations for ¢ and f
respectively. Their solution may be analyzed in terms
of two cases: (1) B2 -g?D+0 (g, and g, are type I or
1), (2) BI* -g°D=0 (g, and g, are type III).

Case (1): Bh® — gD+ 0, Equations (4. 6a,b) yield

=[iBh +{(iBh)? - (BK® - g*D)(Bi® - g*B")}*/2)/(Bh? - g°D),
(4.8)
f=17Bh={(jBhY - (Bi? - ¢°D)(Bj? + g°D")}'/2|/(BI? - ¢°D).
in order that e and f be real, the quantities (i, B’) and
(7,D') must satisfy
(i,B")= (iBh)* - (BI® - g°D)(Bi* - g°B") » 0, 4.9)
(7,D")= (jBRY - (Bh? - g°D)(Bj? + g*D’) = 0.
Finally Eq. (4. 6c) gives us
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~ijg*BD +[+v (i , B'))[+Vj,D" ]=0 (4.10)

Equation (4.10) was obtained by differential iteration of
Eq. (4.4a) and therefore Eq, (4.10) must be satisfied
simultaneously with Eq. (4.4a). If these two equations
may be solved for F and G as real functions of x'3
and x'? then the space—times are locally equivalent.
On the other hand, if these two equations are not
compatible the space—times are not locally equivalent.
It might oceur that Eq. (4.10) is satisfied identically
as a result of Eq. (4.4a). If this is the case we must
integrate Eqs. (4.8). These equations are of the form

2O H(F, G, 1), Lo —H, (R, G, 1),

* (4.11)
where H, and H, stand for the right-hand sides of Egs.
(4.8). The integrability conditions are

%:i&’ _a.ﬂ—_—ﬂ‘l, (4'12)
axm ax/a axm ax/B
where H, and H, are the right-hand sides of Egs. (4.7).

Note that the H’s may vary implicitly with respect to
x’? and x"* through F and G. a,b,e and f will appear in
Eqgs. (4.12) and may be eliminated from these equations
via Eqs. (4.7)—(4.8), Therefore, Egs. (4,12) are of
the form

H(F,G,x"” x")=0, H(F,G,x"” x'*)=0 {4.13)

Equations (4.13) must be satisfied simultaneocusly with
Eq. (4.4a). If these equations can be solved for F and
G as functions of x’3 and x’*, the space—times are
locally equivalent, If these equations are not compatible
the space—times are not locally equivalent. However,
once again Egs. (4.13) may be satisfied identically as

a result of Eq. (4.4a). If this is the case, we are left
with the problem of determining if solutions exist for
the over determined system of four quasilinear first
order partial differential equations (4.7) and (4. 8).

Case (2): Bh? —g?D=0. Then
- ,L'ZDI +]'ZBI — 0

’

which is just the condition that g, be type III and there-
fore tells us nothing new, However, the integrability
conditions will once again lead to equations of the form
of Eqs. (4.13),

The above analysis is not valid if g=0. If this is the
case, the analysis may be repeated for 2#0, f g=h= 0,
A is a constant and none of the special results obtained
above are valid, However, this does not involve too
great a loss of generality since none of the PSSTS
discussed in the references given in the Introduction
have A =constant.

SUMMARY

The major thrust of the above analysis was to examine
some of the kinematical aspects of PSSTS. The major
result was the discovery that the special forms of
PSMS, harmonic and orthogonal and some of the special
orthogonal forms, are not really general forms for a
PSM. Given a C* PSM in the form of Eq. (1.3), there
is no guarantee that the special forms discussed in part
(2) exist if k<1, If k=2, the naturally harmonic and
naturally orthogonal forms exist only in a weak sense and
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and there is no guarantee that the Taub and Petrov forms
exist, If =3, there is no guarantee that the Petrov
form exists. Of course, if the given PSST is analytic,
the Cauchy—Kowalewski theorem guarantees the
existence of each of the forms discussed in Sec. 2.

As an example of where this result may be significant,
consider a C*” PSM in the form of Eq. (1.3). As

pointed out by Hawking and Ellis,* the examples of
Choquet-Bruhat and Penrose, Israel, Papepetrou, and
Hamoui show that this metric may describe a physically
interpretable discontinuity. There is no guarantee that
this discontinuity will appear in one of the special forms
for a PSM discussed in Sec. 2.

One can distinguish three local types of PSSTS via the
intrinsic local type classification given in Sec. 3.
Under certain conditions the existence of an extra
Killing vector is correlated with the type classification.
Finally, if one has a class of solutions of the field
equations with plane symmetry, one must face the
problem of finding the subclass of solutions which
cannot be related to each other by coordinate transfor-
mations. The analysis of Sec. 4 may greatly simplify
the solution of this problem.
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Characterization of certain stationary solutions of Einstein’s
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A scheme is proposed to characterize Tomimatsu—Sato solutions of Einstein’s equations. It categorizes an
infinite series of solutions, the lowest (nonflat) members of which are the Schwarzschild solution for the

static case and the Kerr solution for the stationary case.

Einstein’s equations for stationary, axisymmetric
systems give rise to an infinite sequence of potentials,
which are then used to write down infinitesimal trans-
formations to generate new solutions.® So far, it has
not been clear how this formalism relates to the known
stationary, axisymmetric solutions, like the Schwarz-
child or the Kerr solution. Furthermore, Tomimatsu
and Sato® found more such solutions, characterized by
a certain distortion parameter 6, & being the parameter
classifying a series of the Weyl metrics. Since, § can
take any positive real value for the Weyl metrics, it has
been a puzzle as to why the TS solutions should exist
only for the integral values of 5.

We will show here that there is an intimate connection
between the hierarchy of potentials and the TS solutions,
We will characterize the solutions by algebraic relation-
ships among the potentials, which, then necessarily give
only the integral valued Weyl solutions for the static
case and should give the TS solutions for the stationary
case.

We start with Einstein’s field equations as written

down by Kinnersley.® We take the metric of the form
ds® = f, pdxtdx® ~ exp(2T) b,y dx* dx¥,

A,B=1,2, M,N=3,4, (1)

where f, 5, I' are functions of x%, x%,

We have
fofXB:—pZGACy (2)
where indices are raised and lowered using e, , =z 1.

The Einstein field equations imply the existence of
potentials i, 5 such that

VwAB:—p-lfoefxm (3)

where V and v are the two-dimensional gradient
operators

V=(2,,2,), V=(3,, —2,). (4)

Analogous to the Ernst® formulation, the complex
combination

Hyp=Sap+i¥sp (5)
satisfies
VH,, :—ip-IfAXVHXB' (6)

It was shown® that these field equations imply the

2Work supported in part by the National Science Foundation
under Grant PHY76-12246,
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+1
existence of an infinite heierarchy of potentials "HA
which obey the following field equations:

B
n+l I X~rx’1
VHAEZ‘Zp Sa VHXB! (7

nel

where H, , is constructed from lower order potentials

as
n+l 1n n
Hyp=i(Nyp +HAXHXB), (8)
where
in n
VN, 5 :H’J*(AVHXB. (9)

The hierarchy is constructed starting with n=1, with
1
Hyp=H,p.

(Notice that the hierarchy of potentials is defined only up
to a constant, We would use this gauge freedom, when-
ever necessary.)

It was also observed® that these higher potentials when
computed for the flat spacetime were related to each
other by certain algebraic equations. The same was
noticed® to be true for the Schwarzschild case., We will
see here that one can write down a general scheme
classifying the solutions according to one algebraic
relationship among the potentials.,

Appropriate field equations given in (7) can be
combined to give

n+l b ~ ntl n

V(H,, - H,)=—ip [/, V(iHl,; - H,,)
~ n*l n
‘fnv(iHm “sz)], (10)
and
n+l n
V{(iH,, -H,,)
. ~ .n*l n ~ .n*l n
=‘lp-l[f22V(ZH11_H12) —f21V(zH21—H22)], (11)
which imply that
n+l n
iy, =Hy, (12)
if and only if
.nol n
iHy = H,,. (13)
Taking the gradient of Eq. (8) and using Eq. (9), one
obtains
n+2 n+l

V(iH,, -H,,)
n

. n+l n n+l
:Z[(Hu + Hrl)v(iHZL - sz) - (H)z.‘l +H12)V(iHu _le)

n+l n n+l n
+ (iH21 "sz)an - (iHu "le)Vle] (14)
and
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2 n+l
v(iﬂzl - sz)
n

n+l " nel
= it (HTZ + Hz1)v(iH21 = sz) - (ng + sz)v(iHu - le)

n+l n n+l
+ (iHZI 'sz)VHzl - (iHu "ﬁlz)VszL (15)
It follows from Eqs. (12), (13), and (14) that if
n+l n
Z.Hu: le (16)

for some value of », then it would hold good for all
higher values, also.

We classify our solutions by the above single
{complex) algebraic condition. Thus, the Ith order
solutions are characterized by the fact that [ is the
lowest integer for which Eq. (16) is satisfied.

We find that, for the static case, the Weyl solution

-1\
hz@rﬂ (1
is the ith order solution in our classification, where x
and y are prolate spheroidal coordinates. For example,
for =1, the metric is the Schwarzschild solution,
where the unit of length is chosen to be mass, m. A
simple computation gives

o 1
iH, =2i(x - )y=H,,. (18)
For 1 =2, the relevant higher potentials are

2(x =1 (x +2)y

1 2
H,=2ilxy~-2y), H,= TS

. (19)
f,=ilx ~1)2(6v>=2), H,,=(x-176y2-2),

showing that the condition {16) is satisfied for I =2.

For the stationary case, one finds that the Kerr
solution satisfies equation (16) for n=1, i.e., one can
choose a suitable gauge in which the appropriate
potentials are

2qy

Mpzxz_i_qzyz_l d/ 2y
11 (PX+1)2+(12)12

TRV

2g[x(1 = y®) +p(® = ¥°)]
fia= (/7X+1)2 +qzy2 ? (20)

2yLpx +17 - ¢°]

S (e VTt

and
2 1
iH) = H (=1 i + 2ixy)
Since the Weyl solutions given in Eq. (17) are the static

cases of TS solutions, it is evident that the higher order
stationary solutions in our classification scheme should
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contain the TS solutions; a straightforward (but rather
tedious) calculation to show that it is indeed the case
will be done elsewhere.’

The question arises as to what, if any, are the solu-
tions other than the TS solutions, which fall in our
classification scheme. Let us restrict ourselves to the
simplest possible case, i.e., the static =1, case.
Using Eq. (3), one can show that the condition

2 1
iH, =H,,
reduces to the following two equation:
38 N\ _ofL138 08
(Ez~1)( ax ~ ) _£2<y 3y _y3y> 21
and
3 _ N\ _pefl2E 0F
@-n(5-9=2( 5 %), (22)
where
Ittt 23
t= 1 _fu ( )

It is quite clear that £ =x or £ =y satisfies Eqs. (21) and
(22). The most general solutions of these equations are
given by

£ -1
F[;’ 3_——?2— 1] »0 (24)
and
§og-1]_
o} == 25)

where F and G are arbitrary functions. It is not clear
whether one can find suitable forms for F and G such
that one can produce a solution for ¢ which is neither
X nor ¥,
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From complete resolution of a cohomological equation determining the 1-cocycle of an extension of one
mass-null scalar representation by a vectorial mass-null representation of the Poincaré group, we build a

one-parameter family of inequivalent noncompletely reducible representations of this group. Each of them
leads to a quantum field theory by the Fock quantization process to a description of the electromagnetic
field which turns out to be identical with field theories built by others in the general framework of the

generalized Lorentz gauge.

INTRODUCTION

In the Gupta—Bleuler formulation of Maxwell’s theory
a noncompletely reducible representation Uy(a, A) of
the Poincaré group / is basically used.

This representation is realized in a space of 4-
components function ¢, (k), 1 =0,1,2,3, defined on the
future cone C,. If we introduce the “variable”

wkR) =k e, (), k=C,, (1)
and eliminate, for instance, ¢ (k), we can write at
least formally

Via, A) Tyla, A) W(a, A)

0 W, ) |’ @

Uo((l, A) :l

where:

(1) V(a, A) is a representation of / realized in some
space E of three-component functions of C,, according
to

=17,\J
(V(a, A) ) (P) = explia* k) (A,.f_A,.0 %";)J) @;(A1R),

k=C,, (3)
(2) W(a, A) is a representation of 2 realized in the
space F of the w(k) according to
Wia, A) w(k) = explia* k) w(A'E). (4)
(3} Tyla, A) is a column operator mapping F into E
according to

(Tola, A) w); (B) = A,° !-J-‘i—(ikl:—[ ,

ke C,. (5)
Here we understand that Latin indices go from 1 to 3
and Greek from 0 to 3.

Obviously, Ty{a, A) is a solution of the cohomological
equation
T((ay, Ay (ag, Ay)) = Tla, Ay) + ViagAy) T(ay, A) WiagAy)™L, (6)
which ensures that (2) is actually a representation. It
is the equation determining the so-called one-cocycle
of extension of representation W by representation V,
T{a, A) = Z{(W, V).

Up to now, nothing has been said about the topological
structure of E and F, To avoid difficulties associated
with the vertex of the cone, we shall take for F the
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space of C” functions with compact support on C, and
for E the space of functions with components in F, We
assume that T(a, A) is a continuous mapping from F

to E depending continuously on {a, A). Then each solu-
tion of Eq. (6) gives rise to a continuous representa-
tion of /7 in E + F, Some of them are proper to a field
quantization process leading to eventually distinct
descriptions of the quantum electromagnetic field. Our
paper is devoted to a comprehensive study of the solu-
tions of (6) in this framework, and of their applications
in field theory, especially with respect to the resulting
gauge condition and the form of the field equations. It is
somewhat noteworthy that the description of the elec-
tromagnetic field in Laudau gauge (cf. Refs. 1 and 2)
is obtained as a special case of our general
construction.

1. RESOLUTION OF (6)

It will be convenient to identify F with the space
Do(R?) of C* functions on IR® with compact support,
turning to zero in a neighborhood of the origin, DO(IRS)
provided with the topology induced by the usual topology
of N(IR®) is a nuclear space. Therefore, to each com-
ponent of T{a, A) we can associate a distribution
kernel T;(a, A; K, K e (0y(R%) 2 )y (IR®))’ with the proviso
that (cf. Ref. 3)

[ak'T (a, A; K, k") o(k’) )

is in /),(IR®) when @(K) is in )y(IR?). (We choose the
symbolic notation common among the physicists and we
use the measure dk instead of the invariant measure
on C* in order to enjoy the usual distribution
properties. )

Concerning the elements in /J,(IR%)® ),(IR?), we
further need the following technical lemma:

Lemma 1: Let o(k, k') < y(IR%)® )y (R?) with support
in the domain

E<‘k|<A, e<|k’[<A, 0<e<A<oo, (8)
We can write

ot 1= [1-7 (5F) Jus o+ o i), ©

where ¢,(k, k') and ¢, (k, k'), i=1,2,3 are in /)y (IR%)
€ )o(R%), and the £;(r), i=1,2,3, are Fourier trans-
forms of functions in )(IR®) such that (17, (k) is dif-
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ferent from zero when 0<!kl<1 and proportional to k;
in a sufficiently small neighborhood of the origin.

Proof: Let a(k) be a C” function such that

ak =1, |k|<i,
ak)=0, |k|>1
Then
9006, k") = (K, k) [ —a (%)} o (—kﬂ) (10)

is in /),(IR*)@ ), (IR?). The difference ¢(k,k’)
— @o(k, k') is zero when k=Kk’. Therefore, we can find
92k, k") in /) (IR*)® /) (IR*) [and support in (8)] such that

ok, k)= Z) (k; = kD) vi (&, k') + @4k, K'). (11)
Now let f;(x), i=1,2,3, be three functions in ) (IR?)
with Fourier transforms such that 1~ f; (k) is different

from zero when 0< /k!<1 and proportional to k; in a
neighborhood of the origin. Then we can write

90(1{,14'):2[1 f,( )]Zb (k, k') + @k, k'),
where the functions ¥; (k, k’) are defined by
wiﬁ{yk'):ki_k; /[ f; (k k)]w(k k') l'—l 2 3
are obviously in /) (IR*)® ),(IR?®) [and support in (8)].
We now solve (6) step by step.
Pyoposition 1: T;{a,I;k, k') has the following form,
T;(a,I;k, k') =8,,k) a®6(k, k')
(k- kNt Gk,  (12)

where §;,(k) are C” functions outside the origin and
t,(k, k") is an element of ()y(IR®)® /)((IR®))’ and applies
Do(R%) into itself.

+{1 - explia,

Proof: From (6) results
[1-expla’(k- k)] T;(a,I;k, k')
=[1 - explia (k- D] T;(a’,L; k, k'), (13)

If 7(x) is in )(IR’) with Fourier transform equal to one
at the origin, we get from (13) and the continuity in a
of T;a,1;k,k')

(1-7F(k-k")) T;(a, I; %, k')
=[1-explia.(k~£"))] [ da’fl@’) T; @', L; k, k).  (14)

Let us denote by /)., 4(IR°) the space of C” functions
on IR® with compact support in the domain (8). If
ok, k') is in /) 4(IR%), using (14) and (9), we get

ST, 1k, k) ok, k') dkdk’
= (24)¥[1 - explia, (& - e’))]Z} dk dk’ ¥, (@, I;k, k')

x [ da’f,(2A8’) T;(a’ I; K, k) + [ ok, k) dk

x [ dk’ T,(a, T;k, k) [1-01 (%)] a (%4) .

By assumption
T T ) |a (52
Jarianie [1-0 (£)] (5)
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is in /)(R?). Furthermore, the mapping

ok, k') — o, (&, k')
is obviously linear and continuous with respect to the
topology induced on /), 4(IR) by the topology of

DR ® ))4(R%). Therefore, restricted to D, 4R,
T;(a,X;k, k') is in )! ,(IR®) with the following form,

T;i(a,; k, k') =1 - explia (k- )]t &k, k')
+ ﬁi (k, a) é(k - k,),

where #;(k, k") e ! 4(R%) and B;(k, a) is a C™ function
when e< [k1<A, But, ),(R® ),(R% is the inductive
limit of the spaces /), 4{R%) when ¢— 0 and A ~=, and
therefore (/,(IR®)® )o(IR%) is the projective limit of
the spaces /)’ 4(IR®). This easily implies the validity
of (14") for any ¢(k, k') < )o(IR*)®/),(R®) but, this time,
t; &, k) e (DR Ny(R?)) and B;(k, a) is a C™ function
outside the origin. Finally,

Tla+a',I;k k') =T;(a,I;k, k')
+explialk - 2)) T;(a’, I;k, k')

(147

and the continuity in @ imply 8;(k, a) is linear in a.

Pyoposition 2: T;(0, A; Kk, K’) has the following form,

T;(0, A; k, k")

:l{ (k, kl)— <Aij - A |XE-1k) >f (A-Ik A-ik,) “]\-kl,kl']
+6,(A,K) 6k - k') - 0,,(A, K) —— ak' 5k - k'), (15)

where 9;(A, k), 9,,(A, k) are continuous mappings from
SL(2, €) into the set of C” functions on IR® outside the
origin. [By definition, if T(k,k’)< (9,@R%)® N,(R%)’,
we denote by T(A'k, A-'k’) 1A-'k’ |/ 1k’ the distribution
defined by

[A-
f T(A-'k, A-k’) ,k,kf | o(k, k') d& di’

/T(k k') “ﬁ:,’ (A, AK’) d di’.

This definition is understood in all the following. ]

Pyoof: From (6) and

(a, A) = ((1, H)(Oy A) = (0, A)(A-ia’ II)
we get
(1 - explae~£N]T;(0, A; k, k')

(A-tR)
:T,(a,I[;k, k,)" < A ! W

=1y,7
X T;(Ata, I; Ak, A-1k’) '—‘Tk,k ‘

If f(a) is again a function in H(IR’) with Fourier trans-
form equal to one at the origin, we can write

(1-Flk-%")) 7,0, A,k k")

ARy
=ff(a) T(a,T;k, k') da - (Ai oA ﬂ-yr%)

G. Rideau 1628



- 4
f Fla) T;(A1a, I; Ak, A-'k) I‘Tk,k-—i da

But, using Proposition 1 and the relation

-11,7
3k - ) = o(A k- Aty K
this is equivalent to
(1 —f(k—k'))T-(O A;k, k)
o (a- k)) 4 }
L O e
- . BIAY;
x 50k - k') + (1 - k- k'))[ti(k, k') - (A,.: — A %%)
A1k’ |
-1 wiyry 143 B 4
x4, (A1, AMK') =3y ] .

We now apply this formula to the evaluation of

[ T:(0, A; k, k) o(k, k') dk dk’
when ¢(k,k’) is in /), 4(R®) and, therefore, can be put in
the form (9). If we notice further that

o,
37 (kX0 = 55 4,60 T ©

we get (15) after considerations similar to those made
at the end of the proof of Proposition 1.
Incidentally, we obtain the relation

oo

Lemma 2: 0;(A,K) and 8,,(A, k) verify the following
cohomological equations:

i0;; (A, k) =B;;(K) - ) B,,(AK). (16)

0;(AyAq, K) = 6,(A}, k) + ((Ai) 1o (Ay),° (‘1\‘_ R ) 8,(A,, Ai'k)
(17)
0:;(AgAq, k) =6,;,(A1, k)
- (- 0o )
X ((AI)J.”‘— (Ap),° %) 0, (Ag, ATIK).
(18)

Proof: It is almost obvious from applying (6) to
T;(0, A, k,k’) and Proposition 2, if we note that p(k, k')
and (3¢/2k;)(k,k’) are “independent variables, ”

Lemma 3; We have

Bualk) =5 i — g, () 1ok, (19)
where § is some constant,
Pyoof: Let us introduce

6,(k) =B, () &, k" =|Kk| (20)

and let us rewrite (16) in terms of B,,(k) and 5(k). If
we substitute the resultmg expression of 8;,(A, k) in (18)
with Ay =A, and Ay=A"!, we get the equation
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(A’ A %1’1> 5,(A-1k) = 5, (k). 21)

The lemma will be true if we show that the general
solution of (21) has the form

5; (k) = Ok;,

This is the object of:

5 being some constant. (22)

Lemma 4: A vectorial function infinitely differentiable
outside the origin and verifying (21) is a multiple of k.
Proof: Let ¥ be the point on C* with coordinates
Yo=Y3=3, ¥1=72=0

and let I' be the subgroup of SL(2, €) which leaves ¥
invariant,

Writing (21) at ¥ for AeT, we find
8(x)=06,(1)=0, 0;(x)=0/2,

where 0 is some constant. Now

where A,e SL(2, ) is such that
A=k, k=(|k|,k). (24)

But then, the right member of (23) is precisely 5&;.
Taking (16) into account, the lemma implies the follow-
ing expression of 6;;(A, k),

_ - (A-*k)'>
i0,;(A, &) =B, (k) - (Aiz - A TA K]

m 0 (A-lk)m - k
g (A’ = TFH) Pun(A7K) = 0 Tk A
(25)
Proposition 3: 6,(A, k) has the following general form,
A
<Az A ﬁﬁ_k) )t (A'K) - #](k), (26)

where X is a constant and #{(k) are C* functions outside
the origin.

Pyoof: As above, we take k=%, and Ay, Aye SL(2,T)
in (17). We find
14
6,(A,¥) =220+ <A,.’ -A° Tny - 5,!) L, AcT,

where X is a constant and p; the components of a 3-
vector.

Now, with A, as in (24), we get

8, (A A, ¥)=06,(A,, ) + ((Ak),.'_ (a),° %) 9,(A, k).

Using

M= (MANL DA Ly, MAAT, €T,
we have
0,(A A, V) =6,(A, AAA‘Ik’ v

((AkAA;\i_ik) !

- (A, AA-1 1k) 0 |7’1> ] (AA'I}:’ 7).
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Finally, from the cohomological properties of
(A7 = A(A1%)Y /A& 1) and the relation

4 y0_ [as D(A'Li) i,
(AT )" = (Af - AD gy ) ) e M
we get (26) with
(Agi)io

11k) = (A1), " + ) (4, +6,(A,, ).

Iyl

Putting together all these results, we can state the

following theorem.
Theovem 1: T,la

form,

Tila, Ak, k') =2

, Ak, k') has the following general

0

A, ,
Tt Sk -¥)

. k; ‘
R ary Ok

+i(A) 5 (k- k)
+expla(t - k")) (
T,(A™k, A-'K’) -

o (A" k)>
- AT T

T,(k, k"), @7
where A and {4 are some constants and 7,;(k,Kk’) are
some distributions in ()¢(R) % N,(R) applying )y (R®)
into [y(IR%).

Proof: From (), we have

NPy
Ti(a, A K, KD =T,(0, Ak, k') + (1 A - 1\0 (l,/;;\ﬁ];l‘)

7 \
X T,(A"a, I; Ak, A1k’ ‘—A,—E,l‘. o

We here insert (15) and (12) and take in account (26),

(25), and (19). If we note the relations:

AR
kT T

At !
\k: ]

explia(k - p")) 6(A'k - A-'k’) ok - k'),

G(A'ik A-'K’)

exp(a(t - k') )

; S AN
= (AIJ—AZOTT%) k- k)

- ((A'ia)j- (A1g)° %) 6k - k')

we finally get with (27)
Tk, k) =- tﬁ(k, k) +# (k) ok ~-k)

- il g k=K.

Remark: The last two terms in the right member of
(27) turn out to be the trivial 1-cocycle generated by
the 7,(k, k")’s. From the point of view of repregentation
theory, these terms are unmaterial and are easily
eliminated if we perform the transformation

(¢, w) = (p +Tw, w),

where T is the operator from E to F corresponding to
the distribution kernels 7';(k, k’). Therefore, in the
following, we are concerned only with the first two
terms in the right member of (27), so that we are
finally faced with a two (complex) parameter family
of representations of the Poincaré group, written
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atgnd
@:(8) ‘2L explia, k) ((A,.f - A0 %%_3%) ;{4 k)

A gy
ARy AR - ik

e,-{ (AO *ai(ﬁ'ik)

P Ak,

+ i(IQw(A'ik)) (28)

w(k) ‘@22 explia_k) w(A'K), (28)
where ¢; (k) and w(k) are in /y(IR),

2. CONTINUOUS INVARIANT SESQUILINEAR FORM
AND EQUIVALENCE

Let us assume A# 0. Then, w(k) in (28) can be re-
placed by a “variable” ¢4(k) such that

w(k)-'—k @, (k), = k|

and with
(k) =" ¢, (K),

we get the following form of (28),

- k
@i (K) ‘@4 explia k) {A Yo, (A"k) - % W

X < A0 gg A'ik)+zaOQ(A'1k)>} (29)

i, e., a representation realized in the direct sum L of
four spaces DD(IRS). It is clear that the representations
with the same value of p/X are equivalent. We put in
the following d =ip /X, the corresponding representation
being denoted by Ugla, A).

If B, ,(¢, ¢') is a nondegenerate separately continu-
ous sesquilinear form invariant when U,(a, A) acts on ¢
and Uyla, A) acts on ¢’, we can state the following
proposition.

Proposition 4: By o (9, ¢’) exists only if d’ =d, and
then it is written

B, iy, w')=—af % <5ﬁ(k) qo“(k)+dg%—fzz@>
dk —
+b \mQ (k) 2(k), (30)

where a and b are some constants and a#0.

Proof: From our assumption, we can write
By oo, 0" = [ ol B (&, k') p, (&) dk di’,

where B*'(k, k') e (0,(IR%) @ )y (R%)’ .
The invariance with respect to spatial translations
implies
B*(k, k) =b" (k) 6(k- k'), (k)= {R?).

From the invariance with respect to time translation,
we get

B K = = 1 AK), B0k, =2 2K, BK) < DY),
63
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The Lorentz invariance is expressed by

JAK] 3 B(Ak)

Tk Yok, Ikl (32)

B4 (k) = A A b (Ak) +RRAY, ——

which implies

k| B(k) = | Ak| B(Ak).
Therefore, since BK)< HY(IR?), we get
BX) =8/ |k|.

From this, we deduce the following general solution of
(32):

bv (k) = }k, (-

Now, (31) gives the relation
B = - (13' T ad.

Therefore, d=d’ and we get (30) with $=—da; a+0
expresses the nondegeneracy.

M
ag”"+bk“k"+3%(—{k;> .

Corollary 1: There exists a nondegenerate sesquilin-
ear form invariant with respect to U,(a, A) if and only
if d is real. Its general form is given by (30).

Corollary 2: The representations U;(a, A) and U,(a, A)
are equivalent if, and only if, d=d’.

Pyoof: If Uy(a, A) and Uy(a, A) are equivalent, we
have

Uy(a, ) A =AUy(a, A),

where A is an invertible continuous operator on L.
Therefore, B; ,(¢’,A¢) is a nondegenerate, sesquilin-
ear form invariant with respect to Uz(a, A) and U,{a, A),
and from Proposition 4, 4’ =d.

3. INTERTWINING OPERATORS

As we explain later, we need for the quantization
process an intertwining operator between U,(a, A) and
the following representation of P, denoted {/{(a, A):

fulk) 2L explia ) A, 71, (A'R), ke R

where by assumption each 7, (k) is 1n00(}R"‘). [We post-
pone to the next section a discussion about this choice
of the space of test functions, instead of §(IR?), ]

We begin by looking for a separately continuous
sesquilinear form B,(¢, f) invariant when Uy{a, A) is
acting on @ and {/(a, A) is acting on f. We can state

Pyoposition 5: For any d, there exists B,(¢, f) given
by

Bd(co,f)zaf %E(k)[ (%], %) - u:, o, Kl k)]
o f 2o
+b [ S awea(lw, (33)
where @, b are some constants and
wl)=F o, &), k=[k|, 20)=#FK), rcR.
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Proof: As before, to B,(p, f) correspond distribution
kernels B**(k, 2’')c (Dp(IR*)® ),(IRY)’. From the in-
variance with respect to space—time translations and
proceeding as in the proof of Proposition 1, we first
get:

Ba(¢,,f):fdk9”u(k) k)7, ( |k |, k)

—-[dk%(k)ﬁ””(k)%,%(lk],k), (34)
where
02 (D) and ¢ ®) =2 & k0% ®.  (69)

The Lorentz invariance is expressed by

BA V00 | Ak | T _’L (AR) OtfiAk)
A A Qo (AR) T + AN S S
=a*"(k) (36)
which implies
(Ak), a*(AK) A" '—%k—]—' =k, a” (k). (37)

Since k,0” (k) is in H}(IR®), the general solution of (37)
is

kl-l-
Jepaf"“(k) =y Tﬂ 3

Substituting in (36) and observing that when some
distribution T**(k) in ){(R?) verifies

A AT (AK) =T (k),
then it has the general form

T"(K)=ag"" +bk' ",
We finally get (@ =a from (37/)]

o g SRR S ke R
a™v k) =a Ty +ad [y - ad T b T

« const. (37')

a, b, constants,

We get (33), after substitution into {34),

Covollary 3: For any real d < <, there exist inter-
twinning operators II between U,(a, A) and //(a, A). They
have the general form

Lu BQ

(11f), () = a(fu Ik|,k) - d - ([xl, k))

+ Bl 2 [k, ), (38)
where @, 8 are some constants and Q(k) =£°f, (k).

Proof: Let 1l be an intertwining operator between
Ugda, A) and {/(a, A). If B, 3(¢, ¢’) is a nondegenerate
sesquilinear form invariant with respect to U,{a, A) and
Uz(a, A), then B, 3(I1f, ¢’) is a sesquilinear form invari-
ant with respect to //(a, A) and U,(a, A). Using (33) and
(30) we get (38) after a trivial identification.

4. QUANTIZATION PROCESS

In this section, we show that, for any d real and
finite, we are able to build a field theory of the electro-
magnetism where the representation of the Poincaré
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group is generated by U,(a, A) and where Maxwell’s
equations are valid only in a restricted sense as in
Gupta—Bleuler theory (see also Ref. 1),

We first build the space 7, the elements of which are
vectors ¥ with components JH Lu (&g, oo, K,) in the
nth tensorial power of /)Q(IR )y depending symmetrically
on K;, it; and vanishing for »: N(¥). We extend to 7
the representation U,(a, A) in the usual way and define
on 7 a Hermitian nondegenerate invariant form

/gd(fﬁ, ‘If),

Bale, )
Ex ,, " dk, "
=2 =0 f I wie, Ky T

" wov; ]e‘fj }31{5 "
X e 11+d—lh§- cT)V:’““V"(k“.“,kn).
i

i=1

For each v in L, we define ¢*(¢) on J by

((I ((,9 (n) n(kh' "5kn)

= Z} Lﬂuj(kj)\I/L(LY;}.)_ B (klz ey kj, eee ,k,,) (40)

and a(¢) by conjugation with respect to 3,($, ¥),

( \p) \I/)(") .,u,.,(kb PP ;kn)

:-v’?fﬁfdk Dy (k)( uu‘f‘d%{—lz’)

xutl, (kky, k). (41)

In the following, we introduce, as usual, *(k) and
a**(k) such that, symbolically
a(p)= [ a* K o, K dk, a'(0)= [a™&K) o.(k)dk.  (42)

If now 7, (x), xR, 1=0,1,2,3 are real functions
with Fourier transforms f (k) in //O(IR1 , we define
the vector potential field A* (x) by

AN = [A* @) k) d'x = a* (7)) + allif), (43)
where
(7)) = (k|00 - 4 T2 (k] + b, (k]

(44)
with Q(k) = k° £, (k).

Since II is an intertwining operator between //(a, A)
and U,(a, A), it is clear that under the action of
Poincaré group, we shall have

Au(,\')(“'m {A-1 LA Ax +a),

i.e., the vector potential field is a true vector with
respect to the Poincaré group.

Proposilion 6: Let B(x) be the scalar field defined by
B(f)=i [, dkle,a™ ®)F(k) - o, (R 7)), (45)
where 7 is a real function on IR! with Fourier transform
in ,(IR*). Then we have the following field equations:
LA, (x) = - 2dp, B{x), {46)
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A, (x) =1~ 2d) B(x). (47)
Proof: By definition of A,(x) as operator distribution,

S ARG fulx) d'x

= [ A ()7 (x) d*,
But

(17, (k) =24k, |k ], K),  *o=|K].
From (44) and (45), we get (46).

AL () == A,
But, with 7(k) in 0),(RY),

M7, (k) =—i(1 = 2d) &y, 7(| k],
(4'1) now results from (44) and (45).

falx) =Lif, (x).

Similarly, we have

fr.(x) =7, 1.
/C[) = ‘k r .

Corollary 4: The electromagnetic field F,
the following field equation,

PHE, () == 2,B(x). (48)

Proof: It is obvious from the preceding proposition
and

Fu, )=

Let us define the subspace 7’ of the physical vectors
as the set of ¥ in 7 such that

“a, (K) =0,

It is readily seen that 4,(®, ¥} is nonnegative on 7’.
Furthermore, from the commutation relations between
" (k) and ™ (k), we easily deduce that

BB

for any &, v= /7,

o(x) verifies

a A () - P]VALL (,\').

&, ¥)=0

Thus Maxwell’s equations are valid in mean on /’.
The same holds for the Lorentz condition, except when
d =} where we get a true operator equation correspond-
ing to the Landau gauge. Obviously, the true physical
space is the quotient 7’/ 7” where J” is the kernel of
R.{®, ) restricted to 7’ [see also {1}]. It turns out that
this quotient does not depend on d and must be identified
with the Fock space built only on the transverse compo-
nents of the vector potential field.

But if the field theories we have obtained substantial-
ly have the same physical content as Gupta—Bleuler
theory, nevertheless they display some unusual fea-
tures. In particular, the Hamiltonian cannot be diag-
onalized and the vector potential field increases linear-
ly with the time. Indeed, let us introduce

[)u' (k): <guv_ E W) Hy(k), (49)

sy [ grv_ & RN ey (50)
bRk =™ -5 )@

with commutation relations independent of d,

1

[0 &), 0" V)] =-

T ok-1L 61)

Then we have the following proposition.

Proposilion 7: The spatial impulsion operators and
the Hamiltonian respectively have the foliowing forms:
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Pi=- [ |k|dkRb™ k)b, (K), i=1,2,3, (52)
PO:—/ dk [k |2 <b*“(k) b, (k) + Ti‘\ (k.57 (k)
S C,
X (fz, b“(k))) . (53)
Proof: By definition
P&y k)
= (Z (kj)i) ‘I’!(i;'.)..,,un(ki, ook, i=1,2,3,
J
(PD\II)EL’;,)n-vyun(k17 L ;kn)
:; !kjl (g’:j - %@L) \Ifi’;’)._"uﬂ"_,un(kb e ?kn)'

This is equivalent to:

Pi:—fdk)k
e, kY

Poz—f dk [k|2a™ (k) <g'u“-2di—;2) a, (k).

fpa™ (k) (a _d (’—%k;) a, (),

Equations (52) and (53) now result directly from (49)
and (50).

Corollary 5: Py cannot be diagonalized when d# 0.

Pyoof: We can write

r=cC,

Since the commutation rules between b™ (k) and b, (k)

are diagonal, P, can be puf in a diagonal form if this
can be done for the matrix {g,” +d(k, #")/k!%}. But it
is readily seen this is impossible.

Proposition 8: The vector potential operator has the
following form,

A* () = f dk(b™ (k) explik_x) + b* (k) expl= 7% x)]

G dk /1 + .
+d -5;‘;_/‘ W{ (2_1 "XOik|> k, b 2 (k) eXp(zk.x)
- ('21_7 +xofk]) k, b*(k) exp(~ ikox)}

20X,

—ib f dk{, b**(k) exp(ik x) — &, b° (k)
r=C,

x expl— ik x)]. (54)

Pyoof: In terms of a” (k) and a™(k), (54) is written
A¥ () :/ dk[a"* (k) exp(i% x) + a” (k) exp(- ik x)]
rEc,
-d —a—i; [xof l—%[(k,,a“’(k) exp(ik_ x)
+ k,a° (k) exp(- ikx)]]
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0

-7 0X,

dk[,a* (k) exp(ikx)
B Ca

- k,a°(K) expl— ik x)]. {55)

Let 7, (x) be real functions on IR* with Fourier trans-

form in /),(IR*). Let us form [fA*(x)7,(x)d'x. If we
notice

fexp(i/e.x)xo

(43) results readily from (55).

3 o _ _é_ T
T dlx = o E f(R),

To conclude this section, we make some remarks and
comments, mainly concerning the choice of the test
function space.

It is usual to take these test functions in §(R?%) or
DRY. However, the restrictions to C, of their Fourier
transform is not a basic space for distribu-
tion theory since their derivatives of any order are not
defined at the vertex of the cone. If we want to define
the " (k) [and a* (k)] as operator distribution, we must
impose regularity conditions at this point. These con-
ditions may be more or less drastic, but we must have
it, when d#0. Our choice of functions with Fourier
transforms in /),(IRY) is merely a matter of mathemati-
cal convenience and simplicity. Nonetheless, we must
notice that, in the subspace of physical vectors, the
cumbersome term in {29) does not contribute and we
can use S(IR') [or H(IR)] as test functions space.

This conclusion is implicit in formula (54), which
shows that our vector potential differs from the vector
potential of the Gupta—Bleuler theory only by a gradient.
But one cannot think that a convenient gauge transforma-
tion brings back all the previous construction to the
Gupta—Bleuler case because such a gauge transforma-
tion restricted to the one-particle subspace would trans-
form Uy{a, A) into Ug(a, A); and, from Corollary 2, this
is impossible.

Finally, we add a few words about the discarded case
A =0in (28). All corresponding representations are
equivalent, Furthermore, there exist only degenerate
sesquilinear forms, so that we shall be unable to
uniquely define annihilation operators as adjoints of
creation operators. Therefore, these representations
are not suitable for a quantization process. It can be
applied only when starting with the representation de-
fined on the quotient of E + F by the kernel of the de-
generate forms. But this representation turns out to be
the direct sum of the unitary representations with zero
mass and heliticities=1, -1, and 0, for which the
quantization is straightforward.

5. CONCLUSION

Let us assume d# 3. Then B(x) can be eliminated
between (46) and (47) and we get the unique field
equation

TA () =20,0°4,K), r= _2d_

5d-1" (6)

It can be derived from the Lagrangian density,
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1234 () 84, (x)
2 ax,

L) =~

A
+3 (0*4,(x). (56’)
For A#1, /{x) is nonsingular, so that we can perform,
a priovi, canonical quantization. The corresponding
commutation relations are

(A% (), A ()] gm0 = [ (), 1Y ()] ye0 (57a)
(11 60, 40 o = § &5k ), (57b)
with

™ () = - -a-%-;%‘--) g, A()). (58)

Now, it can be verified that the expression (54) of
A*(x), when the constant b is equal to zero, provides
a complete solution of (56) and (57), which has been
derived from purely group theoretical considerations.
Thus, we know that (56) and (57) can be solved, at
least if we assume that the distribution operators are
defined on suitable test function gpaces.

Conversely, if we start from the field equations (56)
and the canonical quantization (57), what solutions can
we get and what test function spaces are needed for their
definition? We first note that the commutation relations
(57) imply that A (x) is a distribution in N, depending
parametrically on x;. Therefore, it is convenient to
write the solutions of (56) in a form well suited to the
Cauchy problem. Among various possibilities, we take
the following

A, (%) =a, (x) +% 2uxoT, 61)

where the operator distributions a,{x) and T(x) must
satisfy

Ca,(x)=0, OT(x)=0,

Pl *a, (x). (62)
The first two equations imply that the Fourier trans-

forms, with respect to X, of a,(x) and T(x) are dis-

tributions in the dual variable k, multiplied by

expls ixy k1), But such a factor is not a C* function

in k at the origin, Therefore, either the Fourier trans-

forms of a,(x) and T(x) are zero order distributions,

or we must impose restrictions on the behavior at the

origin of the admissible test functions. It is just what

we have done previously in defining A, (x) as a distribu-

tion on test functions with Fourier transforms in /)y(IR%).

If we adopt such a point of view, we can write, since

any contribution from the origin is vanishing,

a,(x)= j;Ec dk[a™ (k) explik,x) + a* (k) exp(- ik_x)]
and, using the canonical commutation relations, we get

the same commutation relations as for the a* (k) and
a*(k) in Sec. 4.
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Thus, it can be thought that there is a full equivalence
between our group theoretical construction completed
by the Fock process and the Lagrangian formalism com-
pleted by the canonical commutation relations., Never-
theless, this eguivalence takes place only on a formal
level insofar as, from the Lagrangian point of view,
the mathematical problem is not well defined from the
beginning. It is only at the end of the calculation
process that this problem can be precisely settled. On
the contrary, in the group theoretical approach, there
are no ambiguities at all and the quantization process
is founded on a firm ground., Furthermore, whereas
in the Lagrangian version, we cannot treat directly the
case d=3 (A=), it does not matter from the group
theoretical point of view, To tell the truth, one can
raise the objection that (46) and (47) are derivable
from a Lagrangian formalism for any finite d. But then,
the ghost field B(x) occurs explicitly in the Lagrangian,
which is singular, (see Ref, 4) the canonical quantiza-
tion does not make sense, and the mathematical prob-
lem is even less determined than when starting with
{567). Once more, it is the group theoretical treatment
which brings about consistency and closeness.

It must be pointed out that group theoretical treat-
ment leads to a kind of representations called “unde-
composable representations” in Ref. 5, where their
appearance in theoretical physics has been strongly
related to the existence of zero mass particles. From
this point of view, our work shows that the set of un-
decomposable representations is not restricted to the
family of representations induced by undecomposable
representations of the little group. It seems to us that
this opens a new and very large domain of research.

Finally, it is noteworthy that the field theories we
built above are such that ©a¥4, (x)=0. It has been
shown in Ref, 6 that this gauge condition is the simplest
linear gauge condition which is conformal invariant. It
may be asked whether all electromagnetic field theories
verifying this gauge condition have been obtained in the
present paper. We hope to soon give an answer to this
question,
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Multiplicity-free 6-j symbols and Weyl coefficients of U(n):

Explicit evaluation

M. K. F. Wong

Fairfield University, Fairfield, Connecticut 06430
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An explicit expression has been obtained for all known multiplicity-free 6-j symbols of U(n), ic., 6-j
symbols of the following three types, where anyone of its columns consists of (1) two totally symmetric
representations, (2) one totally symmetric and one conjugate to the totally symmetric, and (3) two
conjugate to the totally symmetric. The symmetry properties of the multiplicity-free 6-j symbols of Uln)
under permutation of columns, inversion of any two columns, and conjugation are given. Some general
theorems concerning the multiplicity-free 6-j symbols of U(n) or more precisely, the multiplicity-free 6-;
symbols of the “SU(n) type” have been obtained. Since the Weyl coefficients of U(n) are basically 6-j
symbols of U(n —1), we also conclude that the Wey! coefficients of U(n) have been explicitly obtained.
This result implies that the d function of U(n) can be completely and explicitly written down in terms of

the Weyl coefficients.

1. INTRODUCTION

The problem of classifying multiplicity-free 6- symbols
of U(n) is closely connected with the classification of the
multiplicity-free 3-j symbols of U(n). In the latter case it is
known that the 3-j symbol is multiplicity-free if one of the
three irreducible representations is totally symmetric, i.e., of
the type (p,0), or conjugate to the totally symmetric repre-
sentation, i.e., of the type (p,0). Extending this result from
the 3- symbol to the 6-f symbol, we can say that a sufficient
condition for a 6-f symbol of U(#n} to be multiplicity-free is
the following: (1) Any one of its columns consists of two
totglly symmetric representations, i.e., of the type (p,O),
(¢,0), (2) one is of the type (p,0), one is of the type (¢,0),
(3) two are of the type (p,0), (¢,0). This is a sufficient condi-
tion, but need not be a necessary condition because we do not
know whether a 3-j symbol can be accidentally multiplicity
free even if none of the three representations are of the type
(p,0) or (p,0). In other words, it may be possible that the
complement to the null space of the tensor operator is one
dimensional. We do not know of any such cases, but we do
not have any proofthat they do not exist. We suspect that the
condition is both necessary and sufficient, but we shall leave
this point to be clarified in the future. At any rate, for all
practical purposes, the three cases mentioned above are the
only known cases for the multiplicity-free 6-j symbols of
U(n). In this paper we shall give an explicit expression for
all the three cases mentioned above. In fact, we find that they
are all equivalent to each other, differing from each other by
at most a phase factor.

Besides its intrinsic value, the 6-j symbol of U(n) is also
of interest in connection with the finite transformation d
matrix of U(#n), since it is connected with the Weyl coeffi-
cient of U(n+ 1), as Holman' and Wong? have pointed out.
However, Holman has only shown that the Weyl coefficient,
as a 6+ symbol, can be written as a sum over the product of
four 3-j symbols, but did not succeed in explicity evaluating
the 6-j symbol, whereas we wish to give in this paper an
explicit evaluation of the 6-f symbol, and not merely as a
product of four 3-/ symbols.

There are two ways to attempt an explicit evaluation of
the 6-j symbol. One is to simplify the expression where the 6-;
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symbol is written as a sum over the product of four 3-j sym-
bols. This is the method used by Racah® to obtain the Racah
coefficient of U(2). However, this method is extremely labo-
rious, and without the genius of Racah, we can hardly expect
to make any progress on this line. The other way is to obtain
the 6-j symbol from a 9/ symbol, by putting one of the terms
in the 9-f symbol equal to zero. It is along this line that we
shall proceed to obtain an explicit evaluation of the 6-j sym-
bol of U(n).

There have been two formulas given connecting a 9-f
symbol in U{n) with an isoscalar factor in U{n +1). One
was given by AliSauskas, Jucys, and Jucys,** where five
terms in the 9-j symbol are totally symmetric, i.e., (p,0),
(q,O), (p —q,O) , (r,0), and (#,0). The other was given, inde-
pendently, by Wong® (henceforth referred to as 1), where
two terms are totally symmetric, i.e., (W,,0) and (W, .0)
while three terms are conjugate to the totally svmmetric re-
presentation, i.e., (»,0), (4,0), and {p--¢,0). By putting
g =p, these two expressions give us immediately an explicit
expression for the 6-f symbol of U(n) for cases 1) and (2)
above. The third case can be easily related to the first case by
taking conjugation on all six representations, as we shall
show in Secs. 2 and 3.

Thus the statement we are making is actually very sim-
ple. Essentially we are saying that the maltiplicity-free 6
symbols of U(n ) can be explicitly evaluated from the known
multiplicity-free isoscalar factor of U(n + 1}, where, in par-
ticular, one can put p=¢ and m,,,==m’, , =0, We shall call
this particular isoscalar factor “mfppssif” for “multiplicity-
free p, p, semistretched isoscalar factor.”

The multiplicity-free 3/ symbols of U(x} have been
evaluated by many authors.**’ In particular, Chacon et ¢l.¢
have obtained the 3-f symbol of U(») as a sum over n— 1
variables, while AliSauskas et al.* have abtained, in addition
to the result above, another expession, which, in our present
case, reduces to a sum over n — 2 variables,

Thus in this paper we report the following four results.
1. We have obtained explicit expressions for all known

multiplicity-free 6-f symbols of U(n), i.e., 6-f symbols of the
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three types mentioned above. 2. We have obtained symme-
tries of the multiplicity-free 6-/ symbol of U(#) under per-
mutation of columns and inversion of any two columns, and
also under conjugation. 3. We have obtained some general
theorems concerning the multiplicity-free 6-/ symbols of the
“SU(n) type”, where there is a zero at the end of each irre-
ducible representation. 4. We have obtained explicit expres-
sions for all the Weyl coefficients of U(n), and therefore
explicit expressions for all the finite transformation d matri-
cesof U(n).

This paper contains six sections. In Sec. 2 we give the
definition of the multiplicity-free 6-f symbols of U(#) and
their symmetry properties under permutation of columns
and inversion of any two columns, and also under conjuga-
tion. In Sec. 3 we give an explicit expression for the three
types of multiplicity-free 6-f symbols of U(#). In Sec. 4 we
discuss the 6- symbol of U(2). Since all 6+ symbols in U(2)
are multiplicity-free, our method completely solves the
problem of the 6-j symbol of U(2). We show how our result
agrees with Racah.’ In Sec. 5 we state and prove some gener-
al theorems concerning the multiplicity-free 6-/ symbols of
U(n). All these theorems deal with 6-/ symbols when there is
a zero at the end of each irreducible representation. We call
these 6/ symbols of the “SU(#) type”. In Sec. 6 we discuss
the Weyl coefficients of U(#) and offer some suggestions as
to future topics of research.

2.DEFINITION OF THE MULTIPLICITY-FREE
6-/ SYMBOL OF U(n) AND ITS SYMMETRY
PROPERTIES

We shall use the following notation for the different
coupling coefficients. A Clebsch-Gordan coefficient is de-
noted by

j 1 _] ] J 3

C(ml n, ms)'

A 3-j symbol is denoted by a paranthesis only; thus,
R A )
n; m, m;

is a 3-f symbol. A 6-j symbol is denoted by a brace:

[j’:’l j2 ]:12]
v )

We define the multiplicity-free 6-j symbol of U(n)} by
first recalling the definition of the 6-j symbol of U(2). A 6

symbol is the transformation coeflicient through the follow-
ing two different ways of coupling:

1. j, andj:—*jmjnz andjS*’J’
(2.1)
2. j> and js—»fys, fa and j,-—J.

As is well known,? the 6-j symbol can be written as a
product of four 3-f symbols, i.e.,

B:‘ Jx .]:11]
v s
= [(dimyy, dimy,5) ] V2(— 1y Hi+h+/
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h Ju
X z C(ml mh, m1+mz)

J Js J
Xc(ml—i-mz M—m—m, M)
J Js J23
><C(m2 M—m,—m, —ml)

Js J* Jn
X(m3 -M mlz)

X(— l)i‘+j’+j‘+~’+ju+jz\+m‘+mz‘+M'

(2.2)

Now we generalize the definition of the 6-j symbol from
U(2) to U(n), using the phase convention given in 1. Thus,
for example,

(— 1Y — )eatmi—milD),

(= Ly 34

where
i i+ 1
z;=(>+1) Z mu—i Y m,. (2.3)
=1 /=
and ¢, is defined in 1. More explicitly,
€,=1/2 forn=2+4k
=1 for n=2344k,
=372 forn=4+4k,
=0 forn=5+44k, k=0,1,2,--.
(2.4)

In Eq. (2.2) an asterisk denotes the conjugation oper-
ation.’ Thus

*
m*=my,—m; (2.5)

The symmetry properties of the 6-/ symbol of an arbi-
trary group have been discussed by Derome and Sharp.'*"
In connection with Derome’s work, we would like to make
two observations. The first observation concerns the very
existence of the 3-j symbol itself such that its absolute value
is invariant under every permutation of the j’s and of the
corresponding m’s. It has been shown by Derome' that in
general the 3-j symbol cannot be chosen in symmetric form if
Jis J» *5 are equivalent representations, except in the case of
SU(3)." However, in the situation we are dealing with, ie.,
one of the three representations being of the form (p,0) or
{p,0), this case cannot arise, since i.f two are of the form
( p,O), (p,()), the third must be (p,p,0), which is conjugate to
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(p,0) only for U(3), for which the symmetric 3-j symbol can
be defined. Similarly, for two (,0), (9,0), the third must be
(»,0,0), which is conjugate to (p,p,0) only for U(3). Thus
the existence of the multiplicity-free 3-f symbol of U{(n) is
assured. The second observation concerns the possibility of
extending the phase conventions in U(2) to U(n). It has
been shown by Wigner" that if one is dealing with a simply
reducible (SR) group, then the symmetry properties of the
3-f symbols of that group are essentially the same as R(3),
and the phase conventions of U(2) and R(3) can be ex-
tended to that group. The definition of a simply reducible
groupis (1) it is ambivalent, i.e., every element of the group
is in the same class as its inverse and (2) it is multiplicity
free. Now in the case of U(n), n5-2, we are dealing with the
multiplicity-free cases only, so the second condition is auto-
matically satisfied. The first condition can be stated alterna-
tively as: The conjugate representation is equivalent to the
original representation. Now in the phase convention we
have chosen in I, the conjugate representation has the same
phase as the original representation. Therefore, in the pre-
sent situation, the symmetry properties of the multiplicity-
free 3-/ symbols of U(n) with regard to the phase convention
are essentially the same as a simply reducible group, such as
U(2). We can therefore extend the phase convention from
U(2) to U(n), for the multiplicity-free case.

We now state the symmetry properties of the multiplic-
ity-free 6-f symbol of U(n).

1. Interchange columns 1 and 2.
I J—>J*, J“”j;’jzsf‘—"j;s

We have

N R V) f.‘.n]

[Is J jzs} [J* .13 ]23. (26)
2. Interchange columns 1 and 3.
jl—’]'Tzrju*’JT’js—’j;a:

jn—»j;, Je—JT*.

We have

]:1 jz jlz — .;2 j2 ./;

[’3 J jzs] 533 J J;} (2.7)

3. Inversion of columns 1 and 2.

jl‘_"j» jz—’J*, J—"]; ’ ju‘——’j:z, jza‘_f];r
We have

i 7 ) ;
[lz J L Tl (28)
4. Inversion of columns 1 and 3.

j1—>j;, jl_’ﬂ’ jlz—*jzss

Jos 12 o=, J—T*.

We have

g (3 A

[/3 J j] (At (29)

Note that these symmetry properties are not entirely
the same as Derome and Sharp," or Resnikoff* for SU(3).
This is because, basically, there is a difference in the defini-
tion of the 6-j symbol between various authors. Our defini-
tion is taken from Edmonds,® which agrees with the conven-
tional definition of the 6-j symbol for U(2) or R(3).

5. Symmetry of mf 6-j symbol of U(n) under
conjugation.

Under conjugation, we have

b5 A £
o I s (A S

Combining (2.7) and (2.9) with (2.10), we can also
write

B Jr 1]2[1, Jo J:zs]
y J s v J e

— [{12 ]; _]l]
'23 J j3

(2.10)

(2.11)

(2.12)

etc.

Equation (2.10) is particularly useful in obtaining type
3 6+ symbols of U(n) from type 1, as we shall show in the
next section.

3. EXPLICIT EVALUATION OF THE THREE TYPES OF MULTIPLICITY-FREE 6-j SYMBOLS OF U(n)

Let us start with the explicit evaluation of the multiplicity-free 6-f symbol of U(n) of the first type. Without loss of
generality, we can choosej, and j; to be totally symmetric, and j to be of the form [m, ,_,...,m,_, ,_1,0]. Thus the 6-/ symbol

of type 1 is of the form

[[Wntl’ol [ml'”‘l""’mn——l,n——l’O] [mllm-“)m'nn]
[p.0] [0 150y 1] [72 1090510 ]
with the constraints
p=m1n+'"+mnn_ml,n—l —ee—m,_ 1L,n—1 =My + e +mn,n+ 1 _’mlln_ e —m’nn, (3 1 )
Woii=my,piteodm, o —my—e—m,=m' et m =My, —ee—m, (3.2)
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Equation (3.1} and (3.2) follow necessarily from the formula for the Wigner coefficients of U(#) for the totally symmet-
ric representation, since otherwise the Wigner coefficient is equal to zero.

Now Alisauskas, Jucys, and Jucys® have given a formula relating a doubly stretched 9-f symbol in U(n—1) with an
isoscalar factor ol a totally symmetric tensor operator in U(n ). We can obtain their result by using the technique developed in I

for the dertvation of Eq. (1.17) in I, except that the states (p,0), (¢,0), (p ~¢,0) are changed to the totally symmetric ones (p,0),
(7,00, p—q, 0) respectively. The result is

! é“b()}:: [ i’" fon Lo ’n'u - &] [’nl,nwl"“’mn;l.n-l]
Y:i lp “/»O] -1 l Wn’oln« 1 [Wn’o]n-—l
l l!’70}‘ o [m,ln""‘nltnml,n] [mln”"’mn—l,n]

={dim| Wn’o]n»——l dim[p,O],,,l dim(m'y ety 1) dim(m, 1My 1n— )}

» 1 MM ety VA1) W',,!(p—q)lq!]“2
"/Z’(m'in""’m,n~l n)”’#(ml - 1oy n—l) Wn‘ [7’

ml,,,...,m,,ﬁ_‘,,, n— ln’o
><< (3.3)
ml,n My n m'’ 1,n— 15" ’mn 1,n—1

Equation (3.3) differs from (B1) of Ali§auskas, Jucys, and Jucys by only a dimensional factor, which is due to difference
of definition of the 9-j symbol of U(n—1).

By setting ¢=p in Eq. (3.3), we obtain

[[Wntl’ol [ml,nf1""’mn»~1,n—l’0] [mlln""’mlnn]]
[p’ol [ml,n+1"”’mn,n+1] [mln""’mnn]

:'( - l)we,:(m, M AP W l){dirn(rnl,n~ Py 101 0) dirn(rnln""’rnrm)}_“2

« {.,//(ml_H1....,m,,,,,,+ 1).‘//(ml,n__1,...,m,,~1,n_1,0)}1/2
A et Al (e )

><<m1',,+,..-.,m,,',,H,O Hﬁ:g” m'lm-"’m,nn’o > (34)

’n\n"“!mnn ml,n—l""*mn—l,n~l’0

Now the isoscalar factor “mfppssif” in (3.4) has been evaluated by many authors, and we shall quote only two
results, one by Chacén, Ciftan, and Biedenharn® (also obtained by Ali§auskas, Jucys, and Jucys*), and the other by
Alidauskas er al.* Both results can be expressed in terms of S,,, defined by Chacdn er al.® The first result is expressed as a
sum over n--1 variables. The second over n—2 variables. The first one is

c

< ml, E
fml, . \ ,()]

[m'],
[m ] > Szim'n'p+2.m'1n821mr.n_pP'*’:/m'm»l

Snn([m]n’[m] )Snn 1([m]m[m ]n X)Sn 1,n— \([m]n 19[m ]n 1)
Snn([m]m[m] )Snn 1([m]m[m]n 1)

XSt a([m' T, lm'], ) ¥ (=Dt
(rlu—y

X[Sn,n—l([m]n’[m’]n41+ [r]n—l)Sn—l,n—l([m’]n—l"" (Pl uIm' ]+ )
Sn,n~1([m’]n’[m’]n41+[r]n-l)Sn—l,n——l([m]n—17[m']n—1+ (.-

1

2
% , (3.5)
S tnlm'],_+ [r]n—l’[m’]n—l)}

where

0y I, (hy—g,+k—s)! )1/2

mn(h’ n! 3eees m) (
B VI E | Ry Py a3
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The second formula is

[m'], -5 s
[m’]n—l “YEmpp+Em U Eimy P+ Em

Snn([m]n’[m]n)sn—l,n—1([mI]n—1’[mI]n—l)Sn,n—1([m]n’[m]n—-1)
Sn,n—1([m’]n’[m']n—I)Sn—l,n—l([m]n_li[m,]n_l)

XSnn([m]m[m’]") i (—- l)¢.

rjn

Jj=2
( Sun (7o (11 )Snn—s([r] lm'],1) ) (3.6)
S, (M1, (7108, (P10 (M1 )S,, o ((F],[m],_) )
where
b= 3 mu—~ 37
j=2 j=2

When applying the formula for S, on [r],, it is understood that, since r,,, does not exist, all factors containing
r,, should be automatically removed.

Atfirstsight, Eq. (3.6) seems to contain a sum over n — 1 variables. However, for the semistretched case, m,,,=m’,,, itcan
beseen thatr,,=m,,=m’,,. Thus the sum over r,,, can be trivially done. In our present case, since m,,=m’,,=0, r,,=0. Thus
for the “mfppssif”’ of U(n), (3.6) is a sum over n —2 variables only.

The multiplicity-free 6-j symbol of U(n) of type 2 is obtained from Eq. (1.17) of I, by putting g=p. The result can be
expressed in terms of the 6-f symbol of type 1, since they differ only by a phase factor:

[[Wn+l’0] [ml,n—l""’mn—l,n—l’O] [m'ln""’m,nn]]

[p’O] [ml,n+1""’mn,n+1] [mlm""mnn]
W, 01 [Min_ireoMn 10101 [ 1ot pn]
=(— 1)~ Minees mm‘)_y(mlrnﬂ,m,mnm_“)[[ n+1 Ln—1 n—1n—1 In nn , 3.7
( ) p,0] [ml,n+1""’mn,n+1] [mln""’mnn] ( )

where
n—1
w(Iml)=73 m, forn=468,.2k
i=2

=0 forn=2,3,5,.,2k+1.
The multiplicity-free 6-f symbol of type 3 can be obtained from that of type 1 by using Eq. (2.10). We have

{[Wn+l’0] [ml.n—l!""mn-—l,n—l’ol* [m'ln""’m'nn]*]

[P90] [ml,n+l""9mn,n+l]‘ [mln""’mnn]*
=[ Woi101  (myn_ypeesmy 01,01 [mlln""’mlnn]]‘ (3.8)
[p’O] [ml,n+1""’mn,n+l] [mln""9mnn]

Thus we have obtained the multiplicity-free 6-f symbol of U(#n) for all three types where the totally symmetric or conjugate
to the totally symmetric representations occur in the first column. If, however, they occur in the second or third column, then
we can use Eqgs. (2.6) and (2.7) to change them back to the first column. Finally, if in type 2, the conjugationi is inverted, i.e.,
first row first column is of the form (5,0) and second row first column is of the form (W, ,,0), then we can use either (2.8),
(2.11), or (2.10) to relate it to (3.7).

4. 6-/ symbols of U(2)

Since in U(2), all 3+ symbols are multiplicity free, we conclude that all the 6-j symbols of U(2) can be obtained from Eq.
(3.4). The result, of course, must agree with Racah’s result, and we proceed to demonstrate this fact.

If we write the 6-/ symbol of U(2) in terms of the angular momentum label j, we have the following relation:

i i Jel_[IW,01  [m,0] [m'.z,m'n]].
[ia J jn}‘ [7.0]  [musmu]  [mmal | (4.1)
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then

I =%W3ijz= %(mllz"m,n),

jz=%m11;jza=%(m12—mzz)’ (4.2)

j3=%}7, J= 'zl(mu*mzs)'

Now if we evaluate the 6-f symbol of U(2) according to (3.4) and (3.6), we find that it reduces to a sum over a single
variable. The resulting formula is identical to the “‘doubly stretched” 9-f symbol of U(2), found, e.g., in Eq. (4) of Sharp,** with
one term equal to zero (i.e., d=01n Sharp’s formula). Since a 9-f symbol with one term equal to zero is clearly a 6-j symbol, this
immediately gives us the required result. More explicitly, after puttingd =01in Sharp’s Eq. (4), we can write it as a hypergeome-

tric function .75 ( W, 1) equivalent to Minton’s'* Eq. (7). Then ,F,(W,1) is connected with Racah’s expression through Minton’s
Eq. (3a). Thus our method gives the complete result for the 6-f symbol of U(2).

The multiplicity-free 6-f symbols of other U(n) groups can be evaluated explicitly using (3.4) and (3.5) or (3.6). However,

instead of writing down those expressions explicitly for the other groups, which one can obviously do, we shall show that there
are some general theorems concerning the multiplicity-free 6-f symbols of U{(#). This we do in the next section.

5. SOME GENERAL THEOREMS CONCERNING MULTIPLICITY-FREE 6-j SYMBOLS OF U(n)

In this section we would like to state and prove some general theorems concerning the multiplicity-free 6-j symbols of
U(n). These theorems are all connected with irreducible representations with one or more zeros at the end. Therefore they can
all be called 6-j symbols of the “SU(n) type,” since for an irreducible representation of SU(n), m,,=0.

Theorem 1: A multiplicity-free 6-f symbol of the “SU(n) type” is equivalent to a multiplicity-free 6~ symbol of U(n —1).
Mathematically, this theorem says:

[[WH’O] [m'l,n—]"“’mln—l.n——l’o] {m'ln""’mln—),n'ol ]
[p,0] [Mipsees, 0] (710 1reesMy_ 1 n—1,0] U(n)

=(— 1)€n(Wn+P+'"1n+mll.nf|)*fn—I(Wn+[1+m|n—mn7|,n+m'|,n71‘m(n—— tn—1)

; ’ ’ : 12
( dim[m’y,,...om’, ooy MMy, syt u_1lug—1y )

dim[mlln!""m,n—l,n’OlU(n) dim([m ,_ ety l’O]U(n)

Wn’o] [mll,nAl"“’m’n—l,n—I] [mlln""’m,n——l,n]

. | g
X[ [p.0] (M1 ] L SISO JUEPIRY § P 1)

where ¢, has been defined in Sec. 2.

Equation (5.1) is quite simple and easy to remember. Apart from the phase factor and dimensional factor, which are
connected with the definition of the 6-f symbol, Eq. (5.1) says that in order to change from a multiplicity-free 6- symbol in
U(n), with a zero at the end of each irreducible representation, to a multiplicity-free 6-f symbol in U(# — 1), all one has to do is
“drop off the zero at the end of each irreducible representation.” We shall give two proofs for Theorem 1.

Proof 1: By direct calculation using (3.6)! This was actually the way we arrived at the theorem. Note that the actual
calculation using (3.6) is not trivial, since the S,,,,, functions with or without a zero at the end are not the same. However, it turns
out that after multiplying all the eleven terms of S,,,, together in (3.6), the extra factors all cancel out, and the theorem is
proved.

Proof 2: After completing the proof of Theorem 1 through the (laborious!) method above, we realized that there is a more
direct, and, we think, elegant, proof. This is through the isoscalar factor (mfppssif) between U(n+1) and U(n). Using (3.4)
again, we find that (5.1) is equivalent to the following relation between the mfppssif of U(n+ 1) and U(n).

< [mln’ My, 1:1’00] \ »\ [m ¥ 2h0d *mn lnoo] >
(M1 ey 11,0 P’O (' s 10— 10 Uins 1y
=< [mln""’mn—l,n’oj !H [m 1nseeesi nl—l,n’o] ) (52)
(my sy ni) {m'y e a1 e

Equation (5.2) is obviously true, since all one does is “drop off a zero” at the end of each irreducible representation on the
left hand side of the equation.

It is interesting to apply Theorem 1 to SU(3), and compare with the work of Resnikoff** (1965) and Ali§auskas" (1969).

Theorem 1, when applied to SU(3), gives, in the most general case, i.e., two irreducible representations totally symmetric,
the same result as (7r.5b) of Alifauskas,'” apart from a dimensional factor, which is due to difference of definition. In addition,

1640 J. Math Phys., Vol. 19, No. 7, July 1978 M.K.F. Wong 1640



when there are three irreducible representations totally symmetric, one gets the result of (7r.2) of AliSauskas, again, apart from
the dimensional factor. [Note that m =0 in Alifauskas’ Eq. (7.2).]

With regard to Resnikoff’s work, it is interesting to note that Resnikoff obtained the correct number of terms when
calculating the 6-j symbol of SU(3) with three irredicuble representations totally symmetric. However, some of his terms are
unfortunately incorrect. As a result, Resnikoff did not realize that his Eq. (4.6) is none other than the 6-j symbol of U(2). We
would like to express our admiration for his courageous effort in calculating the 6-j symbol of SU(3). We hope he will accept

our correction to his formula.
The following four terms on the neumerator of Resnikoff Eq. (4.7a),

st!o\l — M)A — 7\13)!P35!,

should read
(}\12‘{"}Ln)!()\u‘*‘}iu—}\l)!(}\‘F}L”—P’u)!(}\l—}‘-u)!-

The following two terms on the denominator of (4.7b),
P2—N(Kio—Pru—pPs—95),

should read

(P —pPr+)UPu+pau—pu—s)

Corollary 1: Theorem 1 is still true, with the appropriate change of phase factors, when the irreducible representations in
(5.1) are changed from type 1 to types 2 and 3.

The corollary can be easily proved by using Egs. (3.7) and (3.8). When applied to SU(3), this corollary gives the results of
AliSauskas (7.3) and (7.4).

The next series of theorems deal with 6-j symbols of U(#) with three irreducible representations totally symmetric.

Theorem 2a: A 6-j symbol in U(n) with three irreducible representations totally symmetric is reducible to a sum over one
variable only, and can therefore be expressed as a generalized hypergeometric function with unit argument.

Proof: Let us say in the 6- symbol in U(n—1)
[[anﬁl (], [m], ]
[P’O] [m]n [m]n~l

[m’],_, is totally symmetric. Then from (3.6) we have the term
...r3n!...rnn[

(rl. '"(—r3n)!'" ('—r)nn)! .

Sqn,n— l([r]n’[m’]n-— ])=S%,n_1(['r2n,..., n"],[mll,n— l,ov""O])z

The result is that 7y, =7, ,=-.=r,,=0. Thus there is only one sum left, i.e, a sum over r,,.

Theorem 2b: When a 6-j symbolin U(#n — 1) has three irreducible representations totally symmetric, then [m'], can have at
most two rows nonzero in the Young tableaux, [m], _, can have at most two rows nonzero in the Young tableaux, and
have at most three rows nonzero in the Young tableaux.

Proof: From Eq. (3.6) and the definition of S,,,,,, we find that Theorem 2b is true, for otherwise, the 6-j symbol will have
factorials of negative integers.

Theorem 2c: All 6-j symbols of U(n), n> 3, with three irreducible representations totally symmetric are equivalent to
the 6- symbol of U(3).

Proof: Combining Theorems 1 and 2b, we can drop off all the zeroes at the end of each irreducible representation.
Since the largest number of nonzro rows in the Young tableaux of the irreducible representations in the 6-j symbol is
three, we conclude that U(3) is the smallest group to which all other groups for n>3 can be reduced.

Theorem 2d: All 6+ symbols of U(n), n> 3, with three irreducible representations totally symmetric can be written
as a ,F, function with unit argument.

Proof: Using Theorem 2c, we only need to calculate the 6-j symbol in U(3) of the form

[[ W!),o] [mllbo;o] [mln,mlzg,O]
[PrO] [mn,mz:,mn] [mu,mzz,O] ’ (54)
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We find, however, that this 6-f symbol in U(3) can be written as a ,F, function with unit argument.
Theorem 2e: All 6 symbols of U(n) with three irreducible representations totally symmetric can be written as a .F,
function with unit argument.

Proof: We know that for U(2), the 6/ symbol can also be written as a .f, function with unit argument. Therefore Theorem
2e is true for all n.

Theorem 2f: All 65 symbols of U(n) with three irreducible representations totally symmetric are reducible to a 6-j symbol
inU(2).

Proof: We finally compute the expression in (5.4) and find that it is reducible to a 6-j symbol in U(2). More precisely,

{[ W, 0] [m';,0,0] [m’m'n'zs;ol
[1%6] [m133m23sm33] [m’mmzz,ol

_ (my . —my+ 1)!(m22—m3,)!m,,!(m,,+2)!(m23+ DYm'y,+1) (m');+ DIm';—msy+ 1)!("1’23—"133)!]]/2
(Mo — 155+ DM ma— my + D o — mg 4+ Dimyp+ Dimy! {m' s+ Dim’ s m' . —myy 4+ D

W,—m3,,0] (m'2—m;3,01] [(m's—my,m'y;—m ]}
— [)ymotma [[ 3 33 12 33 0 3,71 23 3 .
X( ) [P_mh’O] [ml3_m333m23—m33] [mn—mnymu—mn] uU(2) (5.5)

X measure factor X dimensional factor, where

measure factor — (mn‘f'z)!(mzs"' 1)!m33!m’12!(m',3—mn+ 1)!(??1{13—7?233)! (mn—m33+ I)I(mzz—mss)!] 1/2’ (5.6)

(M —my+ 2 (my —myy+ D', —my)i(m' 5+ Dim’,y! (mi+ Dimy,!
dim[m’;;,m’,;,0] u@Q) dim[m,,,m,,0] 176)) ] —12

; (5.7)
(m p—m'n+ 1)(m12—m22+ 1)

dimensional factor= [

Corollary 2: All Theorems 2a—f are true, with the appropniate change of phase factors, when one or more of the irreducible
representations in the 6-/ symbol of U{n) are changed to their conjugate representations.

The proof follows from Eqs. (3.7) and (3.8).

6. WEYL COEFFICIENTS OF U(n)

What we have said about the multiplicity-free 6-f symbols of U(#n) can be equally applied to the Weyl coefficients of U(n).
In particular, we wish to stress that the Weyl coefficients of U(#) are now explicitly known. If one uses Eq. (3.6), then the Weyl
coefficients of U(n), being equivalent to a multiplicity-free 6-j symbol in U(n — 1), can be written as a sum over n — 2 variables.
We thus assert that the representation function of U(n) is also explicitly known, in that we can write down the d-function of
U(n) completely and explicitly if we so wish. The d-function of U(n) can be compared with the double boson polynomial of
U(n). InI, we have given the relation for U(3). Similar relations can obviously be obtained for higher order groups. The double
boson polynomial can be obtained through Moshinsky’s work'® for the highest weight, and the lowering operators of Nagel and
Moshinsky.”” However, Holman® has already given an explicit expression for the & functions of U(n) in Egs. (2.16) and (2.19)
of Ref. 1. Also an explicit expression has been given by Ciftan® for U{4). We can therefore regard this part of the problem as
essentially solved.

Another question, however, which still remains somewhat mysterious, is the Regge? symmetry of the 6-j symbols of U (7).
We have shown in I that the 144 Regge symmetries of U(2) can be regarded as the symmetry of the Weyl coefficients of
U(3)*U(3) for the following state:

J2+J3—K1
J; K,—J,
K, L+J—K, 0 ) (6.1)
J} KZ_JI
J+J,—K,

The 144 symmetries of Regge are then made up of separate permutations of Jy, J, J3, and J,, with separate permutations of
K\, K;, and K, subject to the constraint
Jo+Jl+Jz+Js—K1—K2_K3=0« (62)

The mysterious part is that neither Eq. (3.5) nor Eq. (3.6) gives the full Regge symmetry. If one writes Eq. (3.5) outin
terms of J; and K above, one finds that it is symmetric between the interchange of Jo«—>J,, and J,«—J;, but does not give the
full 144 symmetries. Similarly, Eq. (3.6), as we have shown in Sec. 4, is essentially Racah’s expression, and therefore does not
give the full Regge symmetry explicitly.

This leads us to suspect that there may be yet other expressions for the 6-f symbol or Wey! coefficient of U(n)} which will
display the full Regge symmetry at a glance. If these expressions can be found, then new Regge symmetries for U(3), U(4), etc.,
can also be found.
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